On the extension dimension of module categories

IF 0.7 4区 数学 Q2 MATHEMATICS
Yeyang Peng, Tiwei Zhao
{"title":"On the extension dimension of module categories","authors":"Yeyang Peng, Tiwei Zhao","doi":"10.4134/JKMS.J190681","DOIUrl":null,"url":null,"abstract":"Let Λ be an Artin algebra and mod Λ the category of finitely generated right Λ-modules. We prove that the radical layer length of Λ is an upper bound for the radical layer length of mod Λ. We give an upper bound for the extension dimension of mod Λ in terms of the injective dimension of a certain class of simple right Λ-modules and the radical layer length of DΛ.","PeriodicalId":49993,"journal":{"name":"Journal of the Korean Mathematical Society","volume":"57 1","pages":"1389-1406"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190681","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let Λ be an Artin algebra and mod Λ the category of finitely generated right Λ-modules. We prove that the radical layer length of Λ is an upper bound for the radical layer length of mod Λ. We give an upper bound for the extension dimension of mod Λ in terms of the injective dimension of a certain class of simple right Λ-modules and the radical layer length of DΛ.
论模块类别的可拓维度
设Λ为一个Artin代数,并对Λ的有限生成权Λ-modules的范畴进行建模。证明了Λ的根层长度是mod Λ的根层长度的上界。根据一类简单权Λ-modules的内射维数和DΛ的根层长度,给出了mod Λ的扩展维数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信