{"title":"INVARIANCE OF KNEADING MATRIX UNDER CONJUGACY","authors":"C. Gopalakrishna, Murugan Veerapazham","doi":"10.4134/JKMS.J190378","DOIUrl":null,"url":null,"abstract":". In the kneading theory developed by Milnor and Thurston, it is proved that the kneading matrix and the kneading determinant as- sociated with a continuous piecewise monotone map are invariant under orientation-preserving conjugacy. This paper considers the problem for orientation-reversing conjugacy and proves that the former is not an invariant while the latter is. It also presents applications of the result towards the computational complexity of kneading matrices and the classification of maps up to topological conjugacy.","PeriodicalId":49993,"journal":{"name":"Journal of the Korean Mathematical Society","volume":"58 1","pages":"265-281"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190378","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
. In the kneading theory developed by Milnor and Thurston, it is proved that the kneading matrix and the kneading determinant as- sociated with a continuous piecewise monotone map are invariant under orientation-preserving conjugacy. This paper considers the problem for orientation-reversing conjugacy and proves that the former is not an invariant while the latter is. It also presents applications of the result towards the computational complexity of kneading matrices and the classification of maps up to topological conjugacy.
期刊介绍:
This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).