REGULARITY AND MULTIPLICITY OF SOLUTIONS FOR A NONLOCAL PROBLEM WITH CRITICAL SOBOLEV-HARDY NONLINEARITIES

Pub Date : 2020-01-01 DOI:10.4134/JKMS.J190367
S. Alotaibi, K. Saoudi
{"title":"REGULARITY AND MULTIPLICITY OF SOLUTIONS FOR A NONLOCAL PROBLEM WITH CRITICAL SOBOLEV-HARDY NONLINEARITIES","authors":"S. Alotaibi, K. Saoudi","doi":"10.4134/JKMS.J190367","DOIUrl":null,"url":null,"abstract":"In this work we investigate the nonlocal elliptic equation with critical Hardy-Sobolev exponents as follows, (P) (−∆p)su = λ|u|q−2u+ |u| ps (t)−2u |x|t in Ω, u = 0 in RN \\ Ω, where Ω ⊂ RN is an open bounded domain with Lipschitz boundary, 0 < s < 1, λ > 0 is a parameter, 0 < t < sp < N , 1 < q < p < ps where ps = Np N−sp , p ∗ s(t) = p(N−t) N−sp , are the fractional critical Sobolev and Hardy-Sobolev exponents respectively. The fractional p-laplacian (−∆p)u with s ∈ (0, 1) is the nonlinear nonlocal operator defined on smooth functions by (−∆p)u(x) = 2 lim ↘0 ∫ RN\\B |u(x)− u(y)|p−2(u(x)− u(y)) |x− y|N+ps dy, x ∈ R . The main goal of this work is to show how the usual variational methods and some analysis techniques can be extended to deal with nonlocal problems involving Sobolev and Hardy nonlinearities. We also prove that for some α ∈ (0, 1), the weak solution to the problem (P) is in C1,α(Ω).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work we investigate the nonlocal elliptic equation with critical Hardy-Sobolev exponents as follows, (P) (−∆p)su = λ|u|q−2u+ |u| ps (t)−2u |x|t in Ω, u = 0 in RN \ Ω, where Ω ⊂ RN is an open bounded domain with Lipschitz boundary, 0 < s < 1, λ > 0 is a parameter, 0 < t < sp < N , 1 < q < p < ps where ps = Np N−sp , p ∗ s(t) = p(N−t) N−sp , are the fractional critical Sobolev and Hardy-Sobolev exponents respectively. The fractional p-laplacian (−∆p)u with s ∈ (0, 1) is the nonlinear nonlocal operator defined on smooth functions by (−∆p)u(x) = 2 lim ↘0 ∫ RN\B |u(x)− u(y)|p−2(u(x)− u(y)) |x− y|N+ps dy, x ∈ R . The main goal of this work is to show how the usual variational methods and some analysis techniques can be extended to deal with nonlocal problems involving Sobolev and Hardy nonlinearities. We also prove that for some α ∈ (0, 1), the weak solution to the problem (P) is in C1,α(Ω).
分享
查看原文
一类临界sobolev-hardy非线性非局部问题解的正则性和多重性
在这个工作我们调查外地椭圆方程临界Hardy-Sobolev指数如下,(P)(−∆P)苏=λ| u | q−2 u + | | ps (t)−2 u | x | tΩ,在RN \ u = 0Ω,哪里Ω⊂RN和李普希茨是一个开放的有限域边界,0 < s < 1,λ> 0是一个参数,0 < t < sp < N, 1 < < P < P, P = Np N−sp, P∗s (t) = P (N−t) N−sp,分别是分数重要水列夫和Hardy-Sobolev指数。s∈(0,1)的分数阶p-拉普拉斯算子(−∆p)u是光滑函数上定义的非线性非局部算子,即(−∆p)u(x) = 2 lim ` ` 0∫RN\B |u(x)−u(y)|p−2(u(x)−u(y)) |x−y|N+ps dy, x∈R。这项工作的主要目的是展示如何将通常的变分方法和一些分析技术扩展到处理涉及Sobolev和Hardy非线性的非局部问题。我们还证明了对于某些α∈(0,1),问题(P)的弱解在C1,α(Ω)中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信