AN EVALUATION FORMULA FOR A GENERALIZED CONDITIONAL EXPECTATION WITH TRANSLATION THEOREMS OVER PATHS

Pub Date : 2020-01-01 DOI:10.4134/JKMS.J190133
D. Cho
{"title":"AN EVALUATION FORMULA FOR A GENERALIZED CONDITIONAL EXPECTATION WITH TRANSLATION THEOREMS OVER PATHS","authors":"D. Cho","doi":"10.4134/JKMS.J190133","DOIUrl":null,"url":null,"abstract":". Let C [0 ,T ] denote an analogue of Wiener space, the space of real-valued continuous functions on the interval [0 ,T ]. For a partition 0 = t 0 < t 1 < ··· < t n < t n +1 = T of [0 ,T ], define X n : C [0 ,T ] → R n +1 by X n ( x ) = ( x ( t 0 ) ,x ( t 1 ) ,...,x ( t n )). In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C [0 ,T ] with the conditioning function X n which has a drift and does not contain the present position of paths. As applications of the formula with X n , we evaluate the Radon-Nikodym derivatives of the functions (cid:82) T 0 [ x ( t )] m dλ ( t )( m ∈ N ) and [ (cid:82) T 0 x ( t ) dλ ( t )] 2 on C [0 ,T ], where λ is a complex-valued Borel measure on [0 ,T ]. Finally we derive two translation theorems for the Radon-Nikodym derivatives of the functions on C [0 ,T ].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

. Let C [0 ,T ] denote an analogue of Wiener space, the space of real-valued continuous functions on the interval [0 ,T ]. For a partition 0 = t 0 < t 1 < ··· < t n < t n +1 = T of [0 ,T ], define X n : C [0 ,T ] → R n +1 by X n ( x ) = ( x ( t 0 ) ,x ( t 1 ) ,...,x ( t n )). In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C [0 ,T ] with the conditioning function X n which has a drift and does not contain the present position of paths. As applications of the formula with X n , we evaluate the Radon-Nikodym derivatives of the functions (cid:82) T 0 [ x ( t )] m dλ ( t )( m ∈ N ) and [ (cid:82) T 0 x ( t ) dλ ( t )] 2 on C [0 ,T ], where λ is a complex-valued Borel measure on [0 ,T ]. Finally we derive two translation theorems for the Radon-Nikodym derivatives of the functions on C [0 ,T ].
分享
查看原文
具有路径平移定理的广义条件期望的求值公式
。设C [0,T]表示区间[0,T]上的实值连续函数空间的一个类似的Wiener空间。对于划分0 = t 0 < t 1 <···< t n < t n +1 = t ([0, t]),定义X n: C [0, t]→R n +1 × X n (X) = (X (t 0), X (t 1),…(x (t n))本文导出了一个简单的Radon-Nikodym导数的计算公式,类似于C [0,T]上函数的条件期望,条件函数X n具有漂移且不包含路径的当前位置。作为带X n的公式的应用,我们计算了函数(cid:82) t0 [X (T)] m dλ (T)(m∈n)和[(cid:82) t0 X (T) dλ (T)] 2在C [0,T]上的Radon-Nikodym导数,其中λ是[0,T]上的复值Borel测度。最后导出了C [0,T]上函数的Radon-Nikodym导数的两个平移定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信