{"title":"HARNACK ESTIMATES FOR NONLINEAR BACKWARD HEAT EQUATIONS WITH POTENTIALS ALONG THE RICCI-BOURGUIGNON FLOW","authors":"Jian-hong Wang","doi":"10.4134/JKMS.J190049","DOIUrl":null,"url":null,"abstract":"In this paper, we derive various differential Harnack estimates for positive solutions to the nonlinear backward heat type equations on closed manifolds coupled with the Ricci-Bourguignon flow, which was done for the Ricci flow by J.-Y. Wu [30]. The proof follows exactly the one given by X.-D. Cao [4] for the linear backward heat type equations coupled with the Ricci flow.","PeriodicalId":49993,"journal":{"name":"Journal of the Korean Mathematical Society","volume":"57 1","pages":"313-329"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190049","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we derive various differential Harnack estimates for positive solutions to the nonlinear backward heat type equations on closed manifolds coupled with the Ricci-Bourguignon flow, which was done for the Ricci flow by J.-Y. Wu [30]. The proof follows exactly the one given by X.-D. Cao [4] for the linear backward heat type equations coupled with the Ricci flow.
期刊介绍:
This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).