{"title":"WEIGHTED MOORE-PENROSE INVERSES OF ADJOINTABLE OPERATORS ON INDEFINITE INNER-PRODUCT SPACES","authors":"Mengjie Qin, Qingxiang Xu, Ali Zamani","doi":"10.4134/JKMS.J190306","DOIUrl":null,"url":null,"abstract":". Necessary and sufficient conditions are provided under which the weighted Moore–Penrose inverse A † MN exists, where A is an ad- jointable operator between Hilbert C ∗ -modules, and the weights M and N are only self-adjoint and invertible. Relationship between weighted Moore–Penrose inverses A † MN is clarified when A is fixed, whereas M and N are variable. Perturbation analysis for the weighted Moore–Penrose inverse is also provided.","PeriodicalId":49993,"journal":{"name":"Journal of the Korean Mathematical Society","volume":"57 1","pages":"691-706"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190306","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
. Necessary and sufficient conditions are provided under which the weighted Moore–Penrose inverse A † MN exists, where A is an ad- jointable operator between Hilbert C ∗ -modules, and the weights M and N are only self-adjoint and invertible. Relationship between weighted Moore–Penrose inverses A † MN is clarified when A is fixed, whereas M and N are variable. Perturbation analysis for the weighted Moore–Penrose inverse is also provided.
期刊介绍:
This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).