Bifurcation analysis of a single species reaction-diffusion model with nonlocal delay

IF 0.7 4区 数学 Q2 MATHEMATICS
Jun Zhou
{"title":"Bifurcation analysis of a single species reaction-diffusion model with nonlocal delay","authors":"Jun Zhou","doi":"10.4134/JKMS.J190036","DOIUrl":null,"url":null,"abstract":"A reaction-diffusion model with spatiotemporal delay modeling the dynamical behavior of a single species is investigated. The parameter regions for the local stability, global stability and instability of the unique positive constant steady state solution are derived. The conditions of the occurrence of Turing (diffusion-driven) instability are obtained. The existence of time-periodic solutions, the existence and nonexistence of nonconstant positive steady state solutions are proved by bifurcation method and energy method. Numerical simulations are presented to verify and illustrate the theoretical results.","PeriodicalId":49993,"journal":{"name":"Journal of the Korean Mathematical Society","volume":"57 1","pages":"249-281"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190036","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A reaction-diffusion model with spatiotemporal delay modeling the dynamical behavior of a single species is investigated. The parameter regions for the local stability, global stability and instability of the unique positive constant steady state solution are derived. The conditions of the occurrence of Turing (diffusion-driven) instability are obtained. The existence of time-periodic solutions, the existence and nonexistence of nonconstant positive steady state solutions are proved by bifurcation method and energy method. Numerical simulations are presented to verify and illustrate the theoretical results.
一类非局部时滞单组分反应扩散模型的分岔分析
研究了一种具有时空延迟的反应扩散模型,该模型模拟了单个物种的动力学行为。导出了唯一正常数稳态解的局部稳定、全局稳定和不稳定的参数区域。得到了扩散驱动图灵不稳定性发生的条件。用分岔法和能量法证明了时间周期解的存在性、非常正稳态解的存在性和不存在性。数值模拟验证和说明了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信