GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR IN A THREE-DIMENSIONAL TWO-SPECIES CHEMOTAXIS-STOKES SYSTEM WITH TENSOR-VALUED SENSITIVITY

Pub Date : 2020-01-01 DOI:10.4134/JKMS.J190028
B. Liu, Guoqiang Ren
{"title":"GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR IN A THREE-DIMENSIONAL TWO-SPECIES CHEMOTAXIS-STOKES SYSTEM WITH TENSOR-VALUED SENSITIVITY","authors":"B. Liu, Guoqiang Ren","doi":"10.4134/JKMS.J190028","DOIUrl":null,"url":null,"abstract":". In this paper, we deal with a two-species chemotaxis-Stokes system with Lotka-Volterra competitive kinetics under homogeneous Neu- mann boundary conditions in a general three-dimensional bounded domain with smooth boundary. Under appropriate regularity assumptions on the initial data, by some L p -estimate techniques, we show that the system possesses at least one global and bounded weak solution, in addi- tion to discussing the asymptotic behavior of the solutions. Our results generalizes and improves partial previously known ones.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

. In this paper, we deal with a two-species chemotaxis-Stokes system with Lotka-Volterra competitive kinetics under homogeneous Neu- mann boundary conditions in a general three-dimensional bounded domain with smooth boundary. Under appropriate regularity assumptions on the initial data, by some L p -estimate techniques, we show that the system possesses at least one global and bounded weak solution, in addi- tion to discussing the asymptotic behavior of the solutions. Our results generalizes and improves partial previously known ones.
分享
查看原文
具有张量值灵敏度的三维两物种趋化- stokes系统的全局存在性和渐近行为
. 本文研究了一类具有Lotka-Volterra竞争动力学的两物种趋化- stokes系统在光滑边界的一般三维有界区域内的均匀neumann边界条件下的动力学问题。在初始数据的适当正则性假设下,通过一些L - p估计技术,我们证明了系统具有至少一个全局有界弱解,并讨论了解的渐近性态。我们的结果推广和改进了部分先前已知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信