On the tangent space of a weighted homogeneous plane curve singularity

Pub Date : 2020-01-01 DOI:10.4134/JKMS.J180796
J. Sebag, M. Cañón
{"title":"On the tangent space of a weighted homogeneous plane curve singularity","authors":"J. Sebag, M. Cañón","doi":"10.4134/JKMS.J180796","DOIUrl":null,"url":null,"abstract":"Let k be a field of characteristic 0. Let C = Spec(k[x, y]/〈f〉) be a weighted homogeneous plane curve singularity with tangent space πC : TC/k → C . In this article, we study, from a computational point of view, the Zariski closure G (C ) of the set of the 1-jets on C which define formal solutions (in F [[t]]2 for field extensions F of k) of the equation f = 0. We produce Groebner bases of the ideal N1(C ) defining G (C ) as a reduced closed subscheme of TC/k and obtain applications in terms of logarithmic differential operators (in the plane) along C .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J180796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let k be a field of characteristic 0. Let C = Spec(k[x, y]/〈f〉) be a weighted homogeneous plane curve singularity with tangent space πC : TC/k → C . In this article, we study, from a computational point of view, the Zariski closure G (C ) of the set of the 1-jets on C which define formal solutions (in F [[t]]2 for field extensions F of k) of the equation f = 0. We produce Groebner bases of the ideal N1(C ) defining G (C ) as a reduced closed subscheme of TC/k and obtain applications in terms of logarithmic differential operators (in the plane) along C .
分享
查看原文
在加权齐次平面曲线的切空间上的奇异性
设k是特征为0的场。设C = Spec(k[x, y]/ < f >)为切空间πC: TC/k→C的加权齐次平面曲线奇点。本文从计算的角度研究了方程F = 0的形式解(场扩展F (k)在F [[t]]2中)在C上的1-射流集合的Zariski闭包G (C)。我们建立了理想N1(C)的Groebner基,将G (C)定义为TC/k的约化闭子格式,并获得了沿C的对数微分算子(在平面上)的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信