The Relation between the Heat of Melting Point, Boiling Point, and the Activation Energy of Self-Diffusion in Accordance with the Concept of Randomized Particles
{"title":"The Relation between the Heat of Melting Point, Boiling Point, and the Activation Energy of Self-Diffusion in Accordance with the Concept of Randomized Particles","authors":"V. P. Malyshev, A. Makasheva","doi":"10.4236/OJPC.2014.44019","DOIUrl":null,"url":null,"abstract":"On the example of typical metals, it’s found that the activation energy of self-diffusion is above of the melting heat and below of vaporization heat. This corresponds to the existence of liquid-mobile particle classification based on the concept of randomized particles. A formula for estimating the activation energy of self-diffusion by which it is approximately half of the heat of evaporation of the substance is recommended. We derive the temperature dependence for a fraction self-diffusion’s particles.","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":"04 1","pages":"166-172"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OJPC.2014.44019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
On the example of typical metals, it’s found that the activation energy of self-diffusion is above of the melting heat and below of vaporization heat. This corresponds to the existence of liquid-mobile particle classification based on the concept of randomized particles. A formula for estimating the activation energy of self-diffusion by which it is approximately half of the heat of evaporation of the substance is recommended. We derive the temperature dependence for a fraction self-diffusion’s particles.