Stability of rarefaction waves for the two-species Vlasov–Poisson–Boltzmann system with soft potentials

IF 0.6 Q4 MATHEMATICS, APPLIED
Dongcheng Yang, Hongjun Yu
{"title":"Stability of rarefaction waves for the two-species Vlasov–Poisson–Boltzmann system with soft potentials","authors":"Dongcheng Yang, Hongjun Yu","doi":"10.4310/maa.2022.v29.n1.a4","DOIUrl":null,"url":null,"abstract":"In this paper, we construct the global solutions near a local Maxwellian for the onedimensional two-species Vlasov-Poisson-Boltzmann system with soft potentials. The macroscopic components of this local Maxwellian are the approximate rarefaction wave solutions to the associated one-dimensional compressible Euler system. Then we prove the stability of the rarefaction waves for the two-species Vlasov-Poisson-Boltzmann system in the weighted function space. Moreover, some time decay rates of the disparity between two species and the electric field are obtained.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2022.v29.n1.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we construct the global solutions near a local Maxwellian for the onedimensional two-species Vlasov-Poisson-Boltzmann system with soft potentials. The macroscopic components of this local Maxwellian are the approximate rarefaction wave solutions to the associated one-dimensional compressible Euler system. Then we prove the stability of the rarefaction waves for the two-species Vlasov-Poisson-Boltzmann system in the weighted function space. Moreover, some time decay rates of the disparity between two species and the electric field are obtained.
具有软势的两种Vlasov-Poisson-Boltzmann系统稀疏波的稳定性
本文构造了具有软势的一维两种Vlasov-Poisson-Boltzmann系统在局部麦克斯韦方程组附近的全局解。该局部麦克斯韦方程组的宏观分量是相关一维可压缩欧拉方程组的近似稀疏波解。然后证明了两种Vlasov-Poisson-Boltzmann系统在加权函数空间中的稀疏波的稳定性。此外,还得到了两种色差和电场的时间衰减率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信