Conservation laws and error estimates of several classical finite difference schemes for the nonlinear Schrödinger/Gross–Pitaevskii equation

IF 0.6 Q4 MATHEMATICS, APPLIED
Tingjun Wang, Wen Zhang, Chen-Yi Zhu
{"title":"Conservation laws and error estimates of several classical finite difference schemes for the nonlinear Schrödinger/Gross–Pitaevskii equation","authors":"Tingjun Wang, Wen Zhang, Chen-Yi Zhu","doi":"10.4310/MAA.2018.V25.N2.A2","DOIUrl":null,"url":null,"abstract":". In this paper, several classical implicit finite difference schemes for solving the nonlin- ear Schr¨odinger/Gross Pitaevskii (NLS/GP) equation are revisited and analyzed. By introducing a kind of energy functionals, these schemes are proved to preserve the total energy in the discrete sense. Besides the standard energy method, a ‘cut-off’ technique and a ‘lifting’ technique are adopted to establish the optimal point-wise error estimates without any restriction on the grid ratios. Numerical results are reported to verify the theoretical analysis.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"25 1","pages":"97-116"},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2018.V25.N2.A2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

. In this paper, several classical implicit finite difference schemes for solving the nonlin- ear Schr¨odinger/Gross Pitaevskii (NLS/GP) equation are revisited and analyzed. By introducing a kind of energy functionals, these schemes are proved to preserve the total energy in the discrete sense. Besides the standard energy method, a ‘cut-off’ technique and a ‘lifting’ technique are adopted to establish the optimal point-wise error estimates without any restriction on the grid ratios. Numerical results are reported to verify the theoretical analysis.
几种经典非线性Schrödinger/ Gross-Pitaevskii方程有限差分格式的守恒律和误差估计
。本文对求解非线性耳Schr¨odinger/Gross Pitaevskii (NLS/GP)方程的几种经典隐式有限差分格式进行了回顾和分析。通过引入一种能量泛函,证明了这些方案在离散意义上保持了总能量。除标准能量法外,还采用了“截止”技术和“提升”技术,在不受网格比例限制的情况下,建立了最优的逐点误差估计。数值结果验证了理论分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信