Solvable submanifolds of tangent bundle and J. Mather generic linear equations

IF 0.6 Q4 MATHEMATICS, APPLIED
T. Fukuda, S. Janeczko, S. Janeczko
{"title":"Solvable submanifolds of tangent bundle and J. Mather generic linear equations","authors":"T. Fukuda, S. Janeczko, S. Janeczko","doi":"10.4310/maa.2018.v25.n3.a4","DOIUrl":null,"url":null,"abstract":"Using J. Mather results on solutions of generic linear equations the smooth solvability of implicit differential systems is investigated. Implicit Hamiltonian systems are considered and algebraic version of J. Mather theorem was applied in this case. For the generalized Hamiltonian systems defined by P.A.M. Dirac on smooth constraints we find the corresponding Poisson-Lie algebras as a basic symplectic invariants of submanifolds in the symplectic space.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"25 1","pages":"233-256"},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2018.v25.n3.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Using J. Mather results on solutions of generic linear equations the smooth solvability of implicit differential systems is investigated. Implicit Hamiltonian systems are considered and algebraic version of J. Mather theorem was applied in this case. For the generalized Hamiltonian systems defined by P.A.M. Dirac on smooth constraints we find the corresponding Poisson-Lie algebras as a basic symplectic invariants of submanifolds in the symplectic space.
切线束的可解子流形与J. Mather一般线性方程
利用J. Mather关于一般线性方程解的结果,研究了隐微分系统的光滑可解性。本文考虑隐式哈密顿系统,并应用了J. Mather定理的代数版本。对于光滑约束下P.A.M. Dirac定义的广义哈密顿系统,我们找到了相应的泊松-李代数作为辛空间中子流形的基本辛不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信