Parameter identification of a fluid-structure system by deep-learning with an Eulerian formulation

IF 0.6 Q4 MATHEMATICS, APPLIED
O. Pironneau
{"title":"Parameter identification of a fluid-structure system by deep-learning with an Eulerian formulation","authors":"O. Pironneau","doi":"10.4310/maa.2019.v26.n3.a5","DOIUrl":null,"url":null,"abstract":". A simple fluid-structure problem is considered as a test to assess the feasibility of deep-learning algorithms for parameter identification. Tensorflow by Google is used and as it is a stochastic algorithm, provision must be made for the robustness of the large displacement fluid- structure simulator with respect to a wide range of values for the Lam´e coefficients and the density of the solid. Hence an Eulerian monolithic solver is introduced. The numerical tests validate the deep-learning approach.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2019.v26.n3.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

. A simple fluid-structure problem is considered as a test to assess the feasibility of deep-learning algorithms for parameter identification. Tensorflow by Google is used and as it is a stochastic algorithm, provision must be made for the robustness of the large displacement fluid- structure simulator with respect to a wide range of values for the Lam´e coefficients and the density of the solid. Hence an Eulerian monolithic solver is introduced. The numerical tests validate the deep-learning approach.
基于欧拉公式的流固系统深度学习参数辨识
. 考虑一个简单的流体结构问题作为评估深度学习算法用于参数识别的可行性的测试。使用了谷歌的Tensorflow,由于它是一种随机算法,因此必须保证大位移流体结构模拟器在大范围的Lam ' e系数和固体密度值方面的鲁棒性。因此,引入了欧拉单片求解器。数值实验验证了深度学习方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信