{"title":"A relativistic version of the Euler–Korteweg equations","authors":"H. Freistühler","doi":"10.4310/MAA.2018.V25.N1.A1","DOIUrl":null,"url":null,"abstract":". Starting from a variational interpretation of enthalpy, this paper formulates a rela- tivistically covariant version of the Euler-Korteweg equations of fluid dynamics. The system has a canonical Lagrangian and converges in the non-relativistic limit to Dunn and Serrin’s formulation.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"25 1","pages":"1-12"},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2018.V25.N1.A1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4
Abstract
. Starting from a variational interpretation of enthalpy, this paper formulates a rela- tivistically covariant version of the Euler-Korteweg equations of fluid dynamics. The system has a canonical Lagrangian and converges in the non-relativistic limit to Dunn and Serrin’s formulation.