Bernstein polynomial of $2$-Puiseux pairs irreducible plane curve singularities

IF 0.6 Q4 MATHEMATICS, APPLIED
Enrique Artal Bartolo, P. Cassou-Noguès, I. Luengo, A. Melle-Hern'andez
{"title":"Bernstein polynomial of $2$-Puiseux pairs irreducible plane curve singularities","authors":"Enrique Artal Bartolo, P. Cassou-Noguès, I. Luengo, A. Melle-Hern'andez","doi":"10.4310/MAA.2017.V24.N2.A2","DOIUrl":null,"url":null,"abstract":"In 1982, Tamaki Yano proposed a conjecture predicting the set of b-exponents of an irreducible plane curve singularity germ which is generic in its equisingularity class. In \\cite{ACLM-Yano2} we proved the conjecture for the case in which the germ has two Puiseux pairs and its algebraic monodromy has distinct eigenvalues. In this article we aim to study the Bernstein polynomial for any function with the hypotheses above. In particular the set of all common roots of those Bernstein polynomials is given. We provide also bounds for some analytic invariants of singularities and illustrate the computations in suitable examples.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2016-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2017.V24.N2.A2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

In 1982, Tamaki Yano proposed a conjecture predicting the set of b-exponents of an irreducible plane curve singularity germ which is generic in its equisingularity class. In \cite{ACLM-Yano2} we proved the conjecture for the case in which the germ has two Puiseux pairs and its algebraic monodromy has distinct eigenvalues. In this article we aim to study the Bernstein polynomial for any function with the hypotheses above. In particular the set of all common roots of those Bernstein polynomials is given. We provide also bounds for some analytic invariants of singularities and illustrate the computations in suitable examples.
2 -Puiseux对不可约平面曲线奇点的Bernstein多项式
1982年,Tamaki Yano提出了一个关于不可约平面曲线奇异芽的b指数集的猜想,该奇异芽在其等奇异类中是一般的。在\cite{ACLM-Yano2}中,我们证明了胚芽有两个普塞对且其代数一元具有不同特征值的情况下的猜想。本文旨在研究具有上述假设的任意函数的Bernstein多项式。特别给出了这些伯恩斯坦多项式的公根的集合。我们还给出了一些奇异点的解析不变量的界,并举例说明了计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信