Remarks on Laufer’s formula for the Milnor number, Rochlin’s signature theorem and the analytic Euler characteristic of compact complex manifolds

IF 0.6 Q4 MATHEMATICS, APPLIED
J. Seade
{"title":"Remarks on Laufer’s formula for the Milnor number, Rochlin’s signature theorem and the analytic Euler characteristic of compact complex manifolds","authors":"J. Seade","doi":"10.4310/MAA.2017.V24.N1.A8","DOIUrl":null,"url":null,"abstract":"Introduction. There are several classical approaches to studying the geometry and topology of isolated singularities (V, 0) defined by a holomorphic map-germ (C, 0) f → (C, 0). One of these is by looking at resolutions of the singularity, π : Ṽ → V . Another is by considering the non-critical levels of the function f and the way how these degenerate to the special fiber V . Laufer’s formula for the Milnor number establishes a beautiful bridge between these two points of view. The formula says that if n = 3, then one has:","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"24 1","pages":"105-123"},"PeriodicalIF":0.6000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2017.V24.N1.A8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Introduction. There are several classical approaches to studying the geometry and topology of isolated singularities (V, 0) defined by a holomorphic map-germ (C, 0) f → (C, 0). One of these is by looking at resolutions of the singularity, π : Ṽ → V . Another is by considering the non-critical levels of the function f and the way how these degenerate to the special fiber V . Laufer’s formula for the Milnor number establishes a beautiful bridge between these two points of view. The formula says that if n = 3, then one has:
关于紧复流形的Milnor数的Laufer公式、Rochlin签名定理和解析欧拉特性的评述
介绍。有几种经典的方法来研究由全纯映射(C, 0) f→(C, 0)定义的孤立奇点(V, 0)的几何和拓扑。其中一种是通过观察奇点π: Ṽ→V的分辨率。另一种方法是考虑函数f的非临界能级以及它们如何退化到特殊纤维V。劳弗的米尔诺数公式在这两种观点之间建立了一座美丽的桥梁。公式说,如果n = 3,那么有:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信