Stably semiorthogonally indecomposable varieties

Pub Date : 2020-11-25 DOI:10.46298/epiga.2023.volume7.7700
D. Pirozhkov
{"title":"Stably semiorthogonally indecomposable varieties","authors":"D. Pirozhkov","doi":"10.46298/epiga.2023.volume7.7700","DOIUrl":null,"url":null,"abstract":"A triangulated category is said to be indecomposable if it admits no\nnontrivial semiorthogonal decompositions. We introduce a definition of a\nnoncommutatively stably semiorthogonally indecomposable (NSSI) variety. This\npropery implies, among other things, that each smooth proper subvariety has\nindecomposable derived category of coherent sheaves, and that if $Y$ is NSSI,\nthen for any variety $X$ all semiorthogonal decompositions of $X \\times Y$ are\ninduced from decompositions of $X$. We prove that any variety whose Albanese\nmorphism is finite is NSSI, and that the total space of a fibration over NSSI\nbase with NSSI fibers is also NSSI. We apply this indecomposability to deduce\nthat there are no phantom subcategories in some varieties, including surfaces\n$C \\times \\mathbb{P}^1$, where $C$ is any smooth proper curve of positive\ngenus.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.volume7.7700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A triangulated category is said to be indecomposable if it admits no nontrivial semiorthogonal decompositions. We introduce a definition of a noncommutatively stably semiorthogonally indecomposable (NSSI) variety. This propery implies, among other things, that each smooth proper subvariety has indecomposable derived category of coherent sheaves, and that if $Y$ is NSSI, then for any variety $X$ all semiorthogonal decompositions of $X \times Y$ are induced from decompositions of $X$. We prove that any variety whose Albanese morphism is finite is NSSI, and that the total space of a fibration over NSSI base with NSSI fibers is also NSSI. We apply this indecomposability to deduce that there are no phantom subcategories in some varieties, including surfaces $C \times \mathbb{P}^1$, where $C$ is any smooth proper curve of positive genus.
分享
查看原文
稳定的半正交不可分解品种
如果一个三角化范畴允许非平凡的半正交分解,则称其不可分解。引入了非交换稳定半正交不可分解(NSSI)变量的定义。这一性质意味着,除其他性质外,每个光滑固有子变种都有一个可分解的相干束的派生范畴,并且如果$Y$是自伤的,那么对于任何变种$X$,所有$X \乘以Y$的半正交分解都是由$X$的分解导出的。证明了任何Albanesemorphism是有限的品种都是自伤的,并且自伤纤维在自伤基础上的纤维的总空间也是自伤的。我们应用这一不可分解性,推导出在某些曲面$C \乘以$ mathbb{P}^1$中不存在幻子范畴,其中$C$是任何正属的光滑固有曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信