{"title":"Rigidity of projective symmetric manifolds of Picard number 1 associated to composition algebras","authors":"Yifei Chen, Baohua Fu, Qifeng Li","doi":"10.46298/epiga.2023.10432","DOIUrl":null,"url":null,"abstract":"To each complex composition algebra $\\mathbb{A}$, there associates a\nprojective symmetric manifold $X(\\mathbb{A})$ of Picard number one, which is\njust a smooth hyperplane section of the following varieties ${\\rm Lag}(3,6),\n{\\rm Gr}(3,6), \\mathbb{S}_6, E_7/P_7.$ In this paper, it is proven that these\nvarieties are rigid, namely for any smooth family of projective manifolds over\na connected base, if one fiber is isomorphic to $X(\\mathbb{A})$, then every\nfiber is isomorphic to $X(\\mathbb{A})$.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.10432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
To each complex composition algebra $\mathbb{A}$, there associates a
projective symmetric manifold $X(\mathbb{A})$ of Picard number one, which is
just a smooth hyperplane section of the following varieties ${\rm Lag}(3,6),
{\rm Gr}(3,6), \mathbb{S}_6, E_7/P_7.$ In this paper, it is proven that these
varieties are rigid, namely for any smooth family of projective manifolds over
a connected base, if one fiber is isomorphic to $X(\mathbb{A})$, then every
fiber is isomorphic to $X(\mathbb{A})$.