$G$-fixed Hilbert schemes on $K3$ surfaces, modular forms, and eta products

Pub Date : 2019-07-02 DOI:10.46298/epiga.2022.6986
J. Bryan, 'Ad'am Gyenge
{"title":"$G$-fixed Hilbert schemes on $K3$ surfaces, modular forms, and eta\n products","authors":"J. Bryan, 'Ad'am Gyenge","doi":"10.46298/epiga.2022.6986","DOIUrl":null,"url":null,"abstract":"Let $X$ be a complex $K3$ surface with an effective action of a group $G$\nwhich preserves the holomorphic symplectic form. Let $$ Z_{X,G}(q) =\n\\sum_{n=0}^{\\infty} e\\left(\\operatorname{Hilb}^{n}(X)^{G} \\right)\\, q^{n-1} $$\nbe the generating function for the Euler characteristics of the Hilbert schemes\nof $G$-invariant length $n$ subschemes. We show that its reciprocal,\n$Z_{X,G}(q)^{-1}$ is the Fourier expansion of a modular cusp form of weight\n$\\frac{1}{2} e(X/G)$ for the congruence subgroup $\\Gamma_{0}(|G|)$. We give an\nexplicit formula for $Z_{X,G}$ in terms of the Dedekind eta function for all 82\npossible $(X,G)$. The key intermediate result we prove is of independent\ninterest: it establishes an eta product identity for a certain shifted theta\nfunction of the root lattice of a simply laced root system. We extend our\nresults to various refinements of the Euler characteristic, namely the Elliptic\ngenus, the Chi-$y$ genus, and the motivic class.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2022.6986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Let $X$ be a complex $K3$ surface with an effective action of a group $G$ which preserves the holomorphic symplectic form. Let $$ Z_{X,G}(q) = \sum_{n=0}^{\infty} e\left(\operatorname{Hilb}^{n}(X)^{G} \right)\, q^{n-1} $$ be the generating function for the Euler characteristics of the Hilbert schemes of $G$-invariant length $n$ subschemes. We show that its reciprocal, $Z_{X,G}(q)^{-1}$ is the Fourier expansion of a modular cusp form of weight $\frac{1}{2} e(X/G)$ for the congruence subgroup $\Gamma_{0}(|G|)$. We give an explicit formula for $Z_{X,G}$ in terms of the Dedekind eta function for all 82 possible $(X,G)$. The key intermediate result we prove is of independent interest: it establishes an eta product identity for a certain shifted theta function of the root lattice of a simply laced root system. We extend our results to various refinements of the Euler characteristic, namely the Elliptic genus, the Chi-$y$ genus, and the motivic class.
分享
查看原文
K3曲面上的$G$固定Hilbert格式,模形式和eta积
设$X$为复曲面$K3$,其有效作用为保持全纯辛形式的群$G$。设$$ Z_{X,G}(q) =\sum_{n=0}^{\infty} e\left(\operatorname{Hilb}^{n}(X)^{G} \right)\, q^{n-1} $$为$G$ -不变长度$n$子方案的Hilbert方案的欧拉特征的生成函数。我们证明了它的倒数$Z_{X,G}(q)^{-1}$是同余子群$\Gamma_{0}(|G|)$的权$\frac{1}{2} e(X/G)$的模尖形式的傅里叶展开式。对于所有82种可能的$(X,G)$,我们给出了一个关于$Z_{X,G}$的Dedekind eta函数的显式公式。我们证明的关键中间结果具有独立的意义:它建立了简系根格的某个移位函数的乘积恒等式。我们将我们的结果扩展到欧拉特征的各种细化,即椭圆属,Chi- $y$属和动机类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信