The maximal unipotent finite quotient, unusual torsion in Fano threefolds, and exceptional Enriques surfaces

Pub Date : 2019-05-11 DOI:10.46298/epiga.2020.volume4.6151
Andrea Fanelli, Stefan Schroer
{"title":"The maximal unipotent finite quotient, unusual torsion in Fano\n threefolds, and exceptional Enriques surfaces","authors":"Andrea Fanelli, Stefan Schroer","doi":"10.46298/epiga.2020.volume4.6151","DOIUrl":null,"url":null,"abstract":"We introduce and study the maximal unipotent finite quotient for algebraic\ngroup schemes in positive characteristics. Applied to Picard schemes, this\nquotient encodes unusual torsion. We construct integral Fano threefolds where\nsuch unusual torsion actually appears. The existence of such threefolds is\nsurprising, because the torsion vanishes for del Pezzo surfaces. Our\nconstruction relies on the theory of exceptional Enriques surfaces, as\ndeveloped by Ekedahl and Shepherd-Barron.\n\n Comment: 29 pages; minor changes","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2020.volume4.6151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We introduce and study the maximal unipotent finite quotient for algebraic group schemes in positive characteristics. Applied to Picard schemes, this quotient encodes unusual torsion. We construct integral Fano threefolds where such unusual torsion actually appears. The existence of such threefolds is surprising, because the torsion vanishes for del Pezzo surfaces. Our construction relies on the theory of exceptional Enriques surfaces, as developed by Ekedahl and Shepherd-Barron. Comment: 29 pages; minor changes
分享
查看原文
极大单幂有限商,Fano三倍的异常扭转,和异常Enriques曲面
引入并研究了正特征代数群格式的极大单幂有限商。应用于皮卡德方案,这个商编码异常扭转。我们构造了积分法诺三折,其中实际出现了这种不寻常的扭转。这种三折的存在是令人惊讶的,因为del Pezzo曲面的扭转消失了。我们的构造依赖于由Ekedahl和Shepherd-Barron提出的特殊恩里克表面理论。评论:29页;微小的变化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信