Aditya Moktan Tamang, R. Parkash, Raj Kamal Srivastava, Padmasana Singh
{"title":"Metabolic Changes during Acclimation and Hardening to Heat and Drought Stress in Zaprionus indianus","authors":"Aditya Moktan Tamang, R. Parkash, Raj Kamal Srivastava, Padmasana Singh","doi":"10.4236/ae.2022.101009","DOIUrl":null,"url":null,"abstract":"The survival ability of insects can be limited with the changes in the levels of energy metabolites under stressful conditions but only a few studies have considered the plastic effects of heat and related climatic factors relevant to tropical habitats. The objectives of our study were to determine whether adults of Zaprionus indianus are capable of rapid heat hardening (RHH) and rapid desiccation hardening (RDH) and to compare its benefits with heat acclimation (HA) and desiccation acclimation (DA). Adult flies reared under season-specific simulated conditions were subjected to 38˚C for RHH and 32˚C for HA, while 5% relative humidity (RH) was maintained for RDH and 40% RH for DA. Stress-induced effects of heat and desiccation on the levels of five metabolites namely cuticular lipids (CL), total body lipids (TBL), protein, proline, and carbohydrates were then estimated by biochemical method. Different duration of heat hardening and acclimation led to more accumulation of CL whereas different durations of desiccation hardening and acclimation revealed less accumulation. In contrast, there was an accumulation of carbohydrates and protein under desiccation hardening and acclimation whereas there was the utilization of carbohydrates and protein under heat hardening and acclimation. However, mixed results were observed on the level of proline and TBL under both heat and desiccation stress. These stress-triggered changes in the levels of various metabolites suggest a possible link between heat and desiccation tolerance. Hence, these compensatory changes in the level of various metabolites also suggest possible energetic homeostasis in Z. indianus living under harsh climatic conditions of heat and drought in tropical regions.","PeriodicalId":58873,"journal":{"name":"昆虫学(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"昆虫学(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.4236/ae.2022.101009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The survival ability of insects can be limited with the changes in the levels of energy metabolites under stressful conditions but only a few studies have considered the plastic effects of heat and related climatic factors relevant to tropical habitats. The objectives of our study were to determine whether adults of Zaprionus indianus are capable of rapid heat hardening (RHH) and rapid desiccation hardening (RDH) and to compare its benefits with heat acclimation (HA) and desiccation acclimation (DA). Adult flies reared under season-specific simulated conditions were subjected to 38˚C for RHH and 32˚C for HA, while 5% relative humidity (RH) was maintained for RDH and 40% RH for DA. Stress-induced effects of heat and desiccation on the levels of five metabolites namely cuticular lipids (CL), total body lipids (TBL), protein, proline, and carbohydrates were then estimated by biochemical method. Different duration of heat hardening and acclimation led to more accumulation of CL whereas different durations of desiccation hardening and acclimation revealed less accumulation. In contrast, there was an accumulation of carbohydrates and protein under desiccation hardening and acclimation whereas there was the utilization of carbohydrates and protein under heat hardening and acclimation. However, mixed results were observed on the level of proline and TBL under both heat and desiccation stress. These stress-triggered changes in the levels of various metabolites suggest a possible link between heat and desiccation tolerance. Hence, these compensatory changes in the level of various metabolites also suggest possible energetic homeostasis in Z. indianus living under harsh climatic conditions of heat and drought in tropical regions.