Chern currents of coherent sheaves

Pub Date : 2021-05-31 DOI:10.46298/epiga.2022.8653
Richard Larkang, Elizabeth Wulcan
{"title":"Chern currents of coherent sheaves","authors":"Richard Larkang, Elizabeth Wulcan","doi":"10.46298/epiga.2022.8653","DOIUrl":null,"url":null,"abstract":"Given a finite locally free resolution of a coherent analytic sheaf $\\mathcal\nF$, equipped with Hermitian metrics and connections, we construct an explicit\ncurrent, obtained as the limit of certain smooth Chern forms of $\\mathcal F$,\nthat represents the Chern class of $\\mathcal F$ and has support on the support\nof $\\mathcal F$. If the connections are $(1,0)$-connections and $\\mathcal F$\nhas pure dimension, then the first nontrivial component of this Chern current\ncoincides with (a constant times) the fundamental cycle of $\\mathcal F$. The\nproof of this goes through a generalized Poincar\\'e-Lelong formula, previously\nobtained by the authors, and a result that relates the Chern current to the\nresidue current associated with the locally free resolution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2022.8653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given a finite locally free resolution of a coherent analytic sheaf $\mathcal F$, equipped with Hermitian metrics and connections, we construct an explicit current, obtained as the limit of certain smooth Chern forms of $\mathcal F$, that represents the Chern class of $\mathcal F$ and has support on the support of $\mathcal F$. If the connections are $(1,0)$-connections and $\mathcal F$ has pure dimension, then the first nontrivial component of this Chern current coincides with (a constant times) the fundamental cycle of $\mathcal F$. The proof of this goes through a generalized Poincar\'e-Lelong formula, previously obtained by the authors, and a result that relates the Chern current to the residue current associated with the locally free resolution.
分享
查看原文
相干捆的陈氏电流
给定具有厄米度量和连接的相干解析层$\mathcalF$的有限局部自由分辨率,我们构造了一个显式电流,作为$\mathcalF$的某些光滑陈恩形式的极限,它表示$\mathcalF$的陈恩类,并且在$\mathcalF$的支持上得到支持。如果连接为$(1,0)$-connections,并且$\mathcal F$具有纯维数,则该chen电流的第一个非平凡分量与$\mathcal F$的基本周期重合(常数乘以)。这是通过作者先前得到的一个广义庞加莱隆公式来证明的,以及一个将陈恩电流与与局部自由分辨率相关的剩余电流联系起来的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信