Predicting stock prices with LSTM: A hybrid machine learning model for financial forecasting

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
G. Shukla, Nitin Balwani, Santosh Kumar
{"title":"Predicting stock prices with LSTM: A hybrid machine learning model for financial forecasting","authors":"G. Shukla, Nitin Balwani, Santosh Kumar","doi":"10.47974/jios-1416","DOIUrl":null,"url":null,"abstract":"This article discusses the challenges of accurately predicting the direction of the stock market and proposes a new approach using machine learning and manual forecasting. The article explores the use of technical analysis and machine learning to predict current stock market indices’ values by training on historical data. The authors demonstrate how these methods can be used to influence investor judgments at different levels of consideration, including unrestricted, near, medium, high, and volumic. The article also explores the use of social media platforms like Twitter and the correlation between stock prices and local weather patterns to improve forecasting accuracy. The authors present their research in three phases, demonstrating the potential of machine learning and technical analysis to provide accurate and reliable predictions for investors seeking to protect themselves from market volatility.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47974/jios-1416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article discusses the challenges of accurately predicting the direction of the stock market and proposes a new approach using machine learning and manual forecasting. The article explores the use of technical analysis and machine learning to predict current stock market indices’ values by training on historical data. The authors demonstrate how these methods can be used to influence investor judgments at different levels of consideration, including unrestricted, near, medium, high, and volumic. The article also explores the use of social media platforms like Twitter and the correlation between stock prices and local weather patterns to improve forecasting accuracy. The authors present their research in three phases, demonstrating the potential of machine learning and technical analysis to provide accurate and reliable predictions for investors seeking to protect themselves from market volatility.
用LSTM预测股票价格:一种用于财务预测的混合机器学习模型
本文讨论了准确预测股票市场方向的挑战,并提出了一种使用机器学习和人工预测的新方法。本文探讨了利用技术分析和机器学习,通过对历史数据的训练来预测当前股票市场指数的价值。作者展示了如何使用这些方法来影响投资者在不同考虑水平上的判断,包括无限制、接近、中等、高和量。文章还探讨了Twitter等社交媒体平台的使用,以及股票价格与当地天气模式之间的相关性,以提高预测的准确性。作者将他们的研究分为三个阶段,展示了机器学习和技术分析的潜力,为寻求保护自己免受市场波动影响的投资者提供准确可靠的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信