Enhancing the accuracy of breast cancer detection and determination of risk factor by using the backpropagation network theory and SVM: Machine learning

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
N. Madhavi, Sushil Dohare, G. Prasad, D. Babu, Abdul Rahman Mohammed Al-Ansari
{"title":"Enhancing the accuracy of breast cancer detection and determination of risk factor by using the backpropagation network theory and SVM: Machine learning","authors":"N. Madhavi, Sushil Dohare, G. Prasad, D. Babu, Abdul Rahman Mohammed Al-Ansari","doi":"10.47974/jios-1365","DOIUrl":null,"url":null,"abstract":"According to the world health organization, every year, more than 8% of women suffer due to breast cancer, and 40% of women die in low-poverty regions. This entire work focuses on the algorithm to detect breast cancer. This algorithm improves the accuracy of the detection and the risk factor determination by using the backpropagation network (BPN) theory and the Support vector method (SVM). By the end of the entire work, the improved accuracy is up to 95% compared to other forms; this proposed method is proper when evaluating the patient report in the image format, like a scanning report.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":"7 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47974/jios-1365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

According to the world health organization, every year, more than 8% of women suffer due to breast cancer, and 40% of women die in low-poverty regions. This entire work focuses on the algorithm to detect breast cancer. This algorithm improves the accuracy of the detection and the risk factor determination by using the backpropagation network (BPN) theory and the Support vector method (SVM). By the end of the entire work, the improved accuracy is up to 95% compared to other forms; this proposed method is proper when evaluating the patient report in the image format, like a scanning report.
利用反向传播网络理论和支持向量机:机器学习提高乳腺癌检测和确定危险因素的准确性
根据世界卫生组织的数据,每年有超过8%的妇女患乳腺癌,40%的妇女死于低贫困地区。整个工作的重点是检测乳腺癌的算法。该算法利用反向传播网络(BPN)理论和支持向量机(SVM)方法,提高了检测和确定风险因素的准确性。在整个工作结束时,与其他形式相比,精度提高了95%;该方法适用于以图像格式评估患者报告,如扫描报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信