Analytical solutions and numerical simulation of COVID-19 fractional order mathematical model by Caputo and conformable fractional differential transform method

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
A. D. Nagargoje, V. C. Borkar, R. Muneshwar
{"title":"Analytical solutions and numerical simulation of COVID-19 fractional order mathematical model by Caputo and conformable fractional differential transform method","authors":"A. D. Nagargoje, V. C. Borkar, R. Muneshwar","doi":"10.47974/jios-1219","DOIUrl":null,"url":null,"abstract":"In this paper, we will discuss an analytical solution and numerical simulation of fractional order mathematical model on COVID-19 under Caputo and conformable sense with the help of fractional differential transform method for different values of q, where q ∈ (0, 1). The underlying mathematical model on COVID-19 consists of four compartments, like, the susceptible class, the healthy class,the infected class and the quarantine class. We show the reliability and simplicity of the methods by comparing the solution of given model obtained by FDTM with the solution obtained by CFDTM graphically and numerically. Further, we analyse the stability of model using Lyapunov direct method under Caputo sense. We conclude that the use of fractional epidemic model provides better understanding and biologically deeper insights about the disease dynamics.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47974/jios-1219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we will discuss an analytical solution and numerical simulation of fractional order mathematical model on COVID-19 under Caputo and conformable sense with the help of fractional differential transform method for different values of q, where q ∈ (0, 1). The underlying mathematical model on COVID-19 consists of four compartments, like, the susceptible class, the healthy class,the infected class and the quarantine class. We show the reliability and simplicity of the methods by comparing the solution of given model obtained by FDTM with the solution obtained by CFDTM graphically and numerically. Further, we analyse the stability of model using Lyapunov direct method under Caputo sense. We conclude that the use of fractional epidemic model provides better understanding and biologically deeper insights about the disease dynamics.
基于Caputo和适形分数阶微分变换方法的COVID-19分数阶数学模型解析解及数值模拟
本文将利用分数阶微分变换方法对q∈(0,1)的不同值讨论Caputo和符合意义下的COVID-19分数阶数学模型的解析解和数值模拟。底层的COVID-19数学模型由易感类、健康类、感染类和隔离类四个隔间组成。通过将FDTM与CFDTM的解进行图形化和数值化比较,证明了该方法的可靠性和简便性。进一步,在Caputo意义下,利用Lyapunov直接方法分析了模型的稳定性。我们的结论是,使用分数流行病模型提供了更好的理解和对疾病动力学的生物学更深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信