Some properties of subordination differential and superordination for univalent functions associated with the convolution operators

IF 1.1 Q1 MATHEMATICS
Bahaa A. Anter, A. Juma
{"title":"Some properties of subordination differential and superordination for univalent functions associated with the convolution operators","authors":"Bahaa A. Anter, A. Juma","doi":"10.47974/jim-1480","DOIUrl":null,"url":null,"abstract":"In this paper, we define the Hadamard product (or convolution) (f * y([h])) (x)  of the analytic function in the unit disk µ = [ξ : |ξ| < 1, ξ ∈ Ȼ] with the non-zero parameter h, satisfactory to the relationship hη (f * ψ([η]))(ξ) = (hη - 1) (f * ψ([η + 1])) (ξ) + ξ(f * ψ([η + 1]))′ (ξ), to derive  subordination, superordination and sandwich results for functions of the form (f * ψ([η]))(ξ)  by using some properties of Subordination and Superordination concepts. Our results serve to generalize and improve some previous studies where the results of this research were applied to linear operator Bbd  band the multiplier operator ℑiℓ,m. This work can be generalized to other linear operators.","PeriodicalId":46278,"journal":{"name":"JOURNAL OF INTERDISCIPLINARY MATHEMATICS","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERDISCIPLINARY MATHEMATICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47974/jim-1480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we define the Hadamard product (or convolution) (f * y([h])) (x)  of the analytic function in the unit disk µ = [ξ : |ξ| < 1, ξ ∈ Ȼ] with the non-zero parameter h, satisfactory to the relationship hη (f * ψ([η]))(ξ) = (hη - 1) (f * ψ([η + 1])) (ξ) + ξ(f * ψ([η + 1]))′ (ξ), to derive  subordination, superordination and sandwich results for functions of the form (f * ψ([η]))(ξ)  by using some properties of Subordination and Superordination concepts. Our results serve to generalize and improve some previous studies where the results of this research were applied to linear operator Bbd  band the multiplier operator ℑiℓ,m. This work can be generalized to other linear operators.
与卷积算子相关的一元函数的从属、微分和上序的一些性质
在本文中,我们定义了阿达玛产品(或卷积)(f * y ([h])) (x)解析函数的单位圆盘µ=(ξ:|ξ| < 1,ξ∈Ȼ)与非零参数h, h的关系满意η(f *ψ((η)))(ξ)= (hη- 1)(f *ψ([η+ 1]))(ξ)+ξ(f *ψ([η+ 1]))”(ξ),获得从属,上位和三明治结果的函数形式(f *ψ((η)))(ξ)通过使用一些从属属性和上位概念。我们的结果有助于推广和改进一些先前的研究,其中本研究的结果被应用于线性算子Bbd频带乘法器算子λ,m。这项工作可以推广到其他线性算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
23.50%
发文量
141
期刊介绍: The Journal of Interdisciplinary Mathematics (JIM) is a world leading journal publishing high quality, rigorously peer-reviewed original research in mathematical applications to different disciplines, and to the methodological and theoretical role of mathematics in underpinning all scientific disciplines. The scope is intentionally broad, but papers must make a novel contribution to the fields covered in order to be considered for publication. Topics include, but are not limited, to the following: • Interface of Mathematics with other Disciplines • Theoretical Role of Mathematics • Methodological Role of Mathematics • Interface of Statistics with other Disciplines • Cognitive Sciences • Applications of Mathematics • Industrial Mathematics • Dynamical Systems • Mathematical Biology • Fuzzy Mathematics The journal considers original research articles, survey articles, and book reviews for publication. Responses to articles and correspondence will also be considered at the Editor-in-Chief’s discretion. Special issue proposals in cutting-edge and timely areas of research in interdisciplinary mathematical research are encouraged – please contact the Editor-in-Chief in the first instance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信