Secured and Privacy-Based IDS for Healthcare Systems on E-Medical Data Using Machine Learning Approach

Q2 Nursing
Sudhakar Sengan, O. Khalaf, Vidya Sagar P., D. Sharma, Arokia Jesu Prabhu L., A. A. Hamad
{"title":"Secured and Privacy-Based IDS for Healthcare Systems on E-Medical Data Using Machine Learning Approach","authors":"Sudhakar Sengan, O. Khalaf, Vidya Sagar P., D. Sharma, Arokia Jesu Prabhu L., A. A. Hamad","doi":"10.4018/ijrqeh.289175","DOIUrl":null,"url":null,"abstract":"Existing methods use static path identifiers, making it easy for attackers to conduct DDoS flooding attacks. Create a system using Dynamic Secure aware Routing by Machine Learning (DAR-ML) to solve healthcare data. A DoS detection system by ML algorithm is proposed in this paper. First, to access the user to see the authorized process. Next, after the user registration, users can compare path information through correlation factors between nodes. Then, choose the device that will automatically activate and decrypt the data key. The DAR-ML is traced back to all healthcare data in the end module. In the next module, the users and admin can describe the results. These are the outcomes of using the network to make it easy. Through a time interval of 21.19% of data traffic, the findings demonstrate an attack detection accuracy of over 98.19%, with high precision and a probability of false alarm.","PeriodicalId":36298,"journal":{"name":"International Journal of Reliable and Quality E-Healthcare","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliable and Quality E-Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijrqeh.289175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Nursing","Score":null,"Total":0}
引用次数: 46

Abstract

Existing methods use static path identifiers, making it easy for attackers to conduct DDoS flooding attacks. Create a system using Dynamic Secure aware Routing by Machine Learning (DAR-ML) to solve healthcare data. A DoS detection system by ML algorithm is proposed in this paper. First, to access the user to see the authorized process. Next, after the user registration, users can compare path information through correlation factors between nodes. Then, choose the device that will automatically activate and decrypt the data key. The DAR-ML is traced back to all healthcare data in the end module. In the next module, the users and admin can describe the results. These are the outcomes of using the network to make it easy. Through a time interval of 21.19% of data traffic, the findings demonstrate an attack detection accuracy of over 98.19%, with high precision and a probability of false alarm.
使用机器学习方法在电子医疗数据上为医疗保健系统提供安全且基于隐私的IDS
现有的方法使用静态路径标识符,使得攻击者很容易进行DDoS泛洪攻击。使用机器学习动态安全感知路由(DAR-ML)创建系统来解决医疗保健数据。提出了一种基于ML算法的DoS检测系统。首先,访问用户查看授权进程。接下来,在用户注册后,用户可以通过节点之间的相关因子来比较路径信息。然后,选择将自动激活并解密数据密钥的设备。该DAR-ML可追溯到终端模块中的所有医疗保健数据。在下一个模块中,用户和管理员可以描述结果。这些都是利用网络使之变得简单的结果。通过21.19%的数据流量时间间隔,研究结果表明攻击检测准确率超过98.19%,具有较高的精度和虚警概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信