Fog Computing Architecture for Scalable Processing of Geospatial Big Data

IF 0.4 Q4 GEOGRAPHY
Rabindra Kumar Barik, R. Priyadarshini, R. K. Lenka, Harishchandra Dubey, K. Mankodiya
{"title":"Fog Computing Architecture for Scalable Processing of Geospatial Big Data","authors":"Rabindra Kumar Barik, R. Priyadarshini, R. K. Lenka, Harishchandra Dubey, K. Mankodiya","doi":"10.4018/ijagr.2020010101","DOIUrl":null,"url":null,"abstract":"Geospatialdataanalysisusingcloudcomputingplatformisoneofthepromisingareasforanalysing, retrieving,andprocessingvolumetricdata.Fogcomputingparadigmassistscloudplatformwherefog devicestrytoincreasethethroughputandreducelatencyattheedgeoftheclient.Inthisresearchpaper, theauthorsdiscusstwocasestudiesongeospatialdataanalysisusingFog-assistedcloudcomputing namely,(1)GangaRiverBasinManagementSystem;and(2)TourismInformationManagementof India.BothcasestudiesevaluateproposedGeoFogarchitectureforefficientanalysisandmanagement ofgeospatial bigdata employing fog computing.The authorsdevelopedaprototypeofGeoFog architectureusingIntelEdisonandRaspberryPidevices.Theauthors implementedsomeof the opensourcecompressionmethodsforreducingthedatatransmissionoverloadinthecloud.Proposed architectureperformsdatacompressionandoverlayanalysisofdata.Theauthorsfurtherdiscussed theimprovementinscalabilityandtimeanalysisusingproposedGeoFogarchitectureandGeospark tool.Discussedresultsshowthemeritoffogcomputingthatholdsanenormouspromiseforenhanced analysisofgeospatialbigdatainriverGangabasinandtourisminformationmanagementscenario. KeywoRDS Cloud Computing, Geospatial Big Data, Geospatial Data, K-Means, Open Source GIS, Overlay Analysis, River, Tourism, Visualization","PeriodicalId":43062,"journal":{"name":"International Journal of Applied Geospatial Research","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/ijagr.2020010101","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Geospatial Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijagr.2020010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 6

Abstract

Geospatialdataanalysisusingcloudcomputingplatformisoneofthepromisingareasforanalysing, retrieving,andprocessingvolumetricdata.Fogcomputingparadigmassistscloudplatformwherefog devicestrytoincreasethethroughputandreducelatencyattheedgeoftheclient.Inthisresearchpaper, theauthorsdiscusstwocasestudiesongeospatialdataanalysisusingFog-assistedcloudcomputing namely,(1)GangaRiverBasinManagementSystem;and(2)TourismInformationManagementof India.BothcasestudiesevaluateproposedGeoFogarchitectureforefficientanalysisandmanagement ofgeospatial bigdata employing fog computing.The authorsdevelopedaprototypeofGeoFog architectureusingIntelEdisonandRaspberryPidevices.Theauthors implementedsomeof the opensourcecompressionmethodsforreducingthedatatransmissionoverloadinthecloud.Proposed architectureperformsdatacompressionandoverlayanalysisofdata.Theauthorsfurtherdiscussed theimprovementinscalabilityandtimeanalysisusingproposedGeoFogarchitectureandGeospark tool.Discussedresultsshowthemeritoffogcomputingthatholdsanenormouspromiseforenhanced analysisofgeospatialbigdatainriverGangabasinandtourisminformationmanagementscenario. KeywoRDS Cloud Computing, Geospatial Big Data, Geospatial Data, K-Means, Open Source GIS, Overlay Analysis, River, Tourism, Visualization
地理空间大数据可扩展处理的雾计算架构
Geospatialdataanalysisusingcloudcomputingplatformisoneofthepromisingareasforanalysing,检索,andprocessingvolumetricdata。Fogcomputingparadigmassistscloudplatformwherefog devicestrytoincreasethethroughputandreducelatencyattheedgeoftheclient。Inthisresearchpaper, theauthorsdiscusstwocasestudiesongeospatialdataanalysisusingFog-assistedcloudcomputing即:(1)GangaRiverBasinManagementSystem;and(2)TourismInformationManagementof印度。BothcasestudiesevaluateproposedGeoFogarchitectureforefficientanalysisandmanagement ofgeospatial bigdata采用雾计算。The authorsdevelopedaprototypeofGeoFog architectureusingIntelEdisonandRaspberryPidevices。Theauthors implementedsomeof theopensourcecompressionmethodsforreducingthedatatransmissionoverloadinthecloud。Proposed architectureperformsdatacompressionandoverlayanalysisofdata。Theauthorsfurtherdiscussed theimprovementinscalabilityandtimeanalysisusingproposedGeoFogarchitectureandGeospark工具。Discussedresultsshowthemeritoffogcomputingthatholdsanenormouspromiseforenhanced analysisofgeospatialbigdatainriverGangabasinandtourisminformationmanagementscenario。关键词云计算,地理空间大数据,地理空间数据,K-Means,开源GIS,叠加分析,河流,旅游,可视化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信