{"title":"Application of GIS-Based Knowledge-Driven and Data-Driven Methods for Debris-Slide Susceptibility Mapping","authors":"Raja Das, A. Nandi, T. Joyner, I. Luffman","doi":"10.4018/ijagr.2021010101","DOIUrl":null,"url":null,"abstract":"Debris-slides are fast-moving landslides that occur in the Appalachian region including the Great Smoky Mountains National Park (GRSM). Various knowledge and data-driven approaches using spatial distribution of the past slides and associated factors could be used to estimate the region's debris-slide susceptibility. This study developed two debris-slide susceptibility models for GRSM using knowledge-driven and data-driven methods in GIS. Six debris-slide causing factors (slope curvature, elevation, soil texture, land cover, annual rainfall, and bedrock discontinuity), and 256 known debris-slide locations were used in the analysis. Knowledge-driven weighted overlay and data-driven bivariate frequency ratio analyses were performed. Both models are helpful; however, each come with a set of advantages and disadvantages regarding degree of complexity, time-dependency, and experience of the analyst. The susceptibility maps are useful to the planners, developers, and engineers for maintaining the park's infrastructures and delineating zones for further detailed geo-technical investigation.","PeriodicalId":43062,"journal":{"name":"International Journal of Applied Geospatial Research","volume":"12 1","pages":"1-17"},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Geospatial Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijagr.2021010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 2
Abstract
Debris-slides are fast-moving landslides that occur in the Appalachian region including the Great Smoky Mountains National Park (GRSM). Various knowledge and data-driven approaches using spatial distribution of the past slides and associated factors could be used to estimate the region's debris-slide susceptibility. This study developed two debris-slide susceptibility models for GRSM using knowledge-driven and data-driven methods in GIS. Six debris-slide causing factors (slope curvature, elevation, soil texture, land cover, annual rainfall, and bedrock discontinuity), and 256 known debris-slide locations were used in the analysis. Knowledge-driven weighted overlay and data-driven bivariate frequency ratio analyses were performed. Both models are helpful; however, each come with a set of advantages and disadvantages regarding degree of complexity, time-dependency, and experience of the analyst. The susceptibility maps are useful to the planners, developers, and engineers for maintaining the park's infrastructures and delineating zones for further detailed geo-technical investigation.