ON MULTIPLIER WEIGHTED-SPACE OF SEQUENCES

Pub Date : 2020-01-01 DOI:10.4134/CKMS.C200040
L. Bouchikhi, A. Kinani
{"title":"ON MULTIPLIER WEIGHTED-SPACE OF SEQUENCES","authors":"L. Bouchikhi, A. Kinani","doi":"10.4134/CKMS.C200040","DOIUrl":null,"url":null,"abstract":"We consider the weighted spaces `p(S, φ) and `p(S, ψ) for 1 < p < +∞, where φ and ψ are weights on S (= N or Z). We obtain a sufficient condition for `p(S, ψ) to be multiplier weighted-space of `p(S, φ) and `p(S, ψ). Our condition characterizes the last multiplier weightedspace in the case where S = Z. As a consequence, in the particular case where ψ = φ, the weighted space `p(Z,ψ) is a convolutive algebra. 1. Preliminaries and introduction Let S (S = N or S = Z) and p ∈ ]1,+∞[. We say that ω is a weight on S if ω : S −→ [1,+∞[, is a map satisfying: ∑ n∈S ω(n) 1 1−p < +∞. We consider the weighted space: `(S, ω) = { (a(n))n∈S ∈ C S : ∑ n∈S |a(n)| ω(n) < +∞ } . Endowed with the norm |·|p,ω defined by: |a|p,ω = (∑ n∈S |a(n)| ω(n) ) 1 p for every (a(n))n∈S ∈ ` (S, ω), the space `(S,ω) becomes a Banach subspace of ` (S). We say that the weight ω is m-convolutive if a positive constant γ = γ(ω) exists such that: ω 1 1−p ∗ ω 1 1−p ≤ γ ω 1 1−p , where ∗ denotes the convolution product. If a= (a(n))n∈S ∈ `(S, ω), we define the complex function F(a) by F(a)(t) = ∑ n∈S a(n)e for every t ∈ R. Received February 6, 2020; Revised April 8, 2020; Accepted July 2, 2020. 2010 Mathematics Subject Classification. 46J10, 46H30.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/CKMS.C200040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the weighted spaces `p(S, φ) and `p(S, ψ) for 1 < p < +∞, where φ and ψ are weights on S (= N or Z). We obtain a sufficient condition for `p(S, ψ) to be multiplier weighted-space of `p(S, φ) and `p(S, ψ). Our condition characterizes the last multiplier weightedspace in the case where S = Z. As a consequence, in the particular case where ψ = φ, the weighted space `p(Z,ψ) is a convolutive algebra. 1. Preliminaries and introduction Let S (S = N or S = Z) and p ∈ ]1,+∞[. We say that ω is a weight on S if ω : S −→ [1,+∞[, is a map satisfying: ∑ n∈S ω(n) 1 1−p < +∞. We consider the weighted space: `(S, ω) = { (a(n))n∈S ∈ C S : ∑ n∈S |a(n)| ω(n) < +∞ } . Endowed with the norm |·|p,ω defined by: |a|p,ω = (∑ n∈S |a(n)| ω(n) ) 1 p for every (a(n))n∈S ∈ ` (S, ω), the space `(S,ω) becomes a Banach subspace of ` (S). We say that the weight ω is m-convolutive if a positive constant γ = γ(ω) exists such that: ω 1 1−p ∗ ω 1 1−p ≤ γ ω 1 1−p , where ∗ denotes the convolution product. If a= (a(n))n∈S ∈ `(S, ω), we define the complex function F(a) by F(a)(t) = ∑ n∈S a(n)e for every t ∈ R. Received February 6, 2020; Revised April 8, 2020; Accepted July 2, 2020. 2010 Mathematics Subject Classification. 46J10, 46H30.
分享
查看原文
序列的乘法器加权空间
考虑1 < p < +∞的加权空间' p(S, φ)和' p(S, ψ),其中φ和ψ是S (= N或Z)上的权重。我们得到了' p(S, ψ)是' p(S, φ)和' p(S, ψ)的乘子加权空间的一个充分条件。我们的条件刻画了S = Z的最后一个乘子加权空间。因此,在ψ = φ的特殊情况下,加权空间' p(Z,ψ)是一个卷积代数。1. 设S (S = N或S = Z), p∈]1,+∞[。如果ω: S−→[1,+∞]是一个映射,满足∑n∈S ω(n) 1 1−p < +∞,则ω是S上的一个权值。我们考虑加权空间:“(年代,ω)= {(n (n))∈∈C年代:∑n∈年代| (n) |ω(n) < +∞}。赋予范数|·|p,ω定义为:|a|p,ω =(∑n∈S |a(n)| ω(n)) 1p,对于每一个(a(n))n∈S∈' (S,ω),空间' (S,ω)成为' (S)的Banach子空间。我们说权ω是m-卷积的,如果一个正常数γ = γ(ω)存在,使得:ω 1 1−p∗ω 1 1−p≤γ ω 1 1−p,其中∗表示卷积积。若a= (a(n))n∈S∈' (S, ω),则对于每个t∈r,我们定义复函数F(a) by F(a)(t) =∑n∈S a(n)e2020年4月8日修订;2020年7月2日录用。2010数学学科分类。46J10, 46H30。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信