ON MULTIPLIER WEIGHTED-SPACE OF SEQUENCES

IF 0.5 Q3 MATHEMATICS
L. Bouchikhi, A. Kinani
{"title":"ON MULTIPLIER WEIGHTED-SPACE OF SEQUENCES","authors":"L. Bouchikhi, A. Kinani","doi":"10.4134/CKMS.C200040","DOIUrl":null,"url":null,"abstract":"We consider the weighted spaces `p(S, φ) and `p(S, ψ) for 1 < p < +∞, where φ and ψ are weights on S (= N or Z). We obtain a sufficient condition for `p(S, ψ) to be multiplier weighted-space of `p(S, φ) and `p(S, ψ). Our condition characterizes the last multiplier weightedspace in the case where S = Z. As a consequence, in the particular case where ψ = φ, the weighted space `p(Z,ψ) is a convolutive algebra. 1. Preliminaries and introduction Let S (S = N or S = Z) and p ∈ ]1,+∞[. We say that ω is a weight on S if ω : S −→ [1,+∞[, is a map satisfying: ∑ n∈S ω(n) 1 1−p < +∞. We consider the weighted space: `(S, ω) = { (a(n))n∈S ∈ C S : ∑ n∈S |a(n)| ω(n) < +∞ } . Endowed with the norm |·|p,ω defined by: |a|p,ω = (∑ n∈S |a(n)| ω(n) ) 1 p for every (a(n))n∈S ∈ ` (S, ω), the space `(S,ω) becomes a Banach subspace of ` (S). We say that the weight ω is m-convolutive if a positive constant γ = γ(ω) exists such that: ω 1 1−p ∗ ω 1 1−p ≤ γ ω 1 1−p , where ∗ denotes the convolution product. If a= (a(n))n∈S ∈ `(S, ω), we define the complex function F(a) by F(a)(t) = ∑ n∈S a(n)e for every t ∈ R. Received February 6, 2020; Revised April 8, 2020; Accepted July 2, 2020. 2010 Mathematics Subject Classification. 46J10, 46H30.","PeriodicalId":45637,"journal":{"name":"Communications of the Korean Mathematical Society","volume":"35 1","pages":"1159-1170"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the Korean Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/CKMS.C200040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the weighted spaces `p(S, φ) and `p(S, ψ) for 1 < p < +∞, where φ and ψ are weights on S (= N or Z). We obtain a sufficient condition for `p(S, ψ) to be multiplier weighted-space of `p(S, φ) and `p(S, ψ). Our condition characterizes the last multiplier weightedspace in the case where S = Z. As a consequence, in the particular case where ψ = φ, the weighted space `p(Z,ψ) is a convolutive algebra. 1. Preliminaries and introduction Let S (S = N or S = Z) and p ∈ ]1,+∞[. We say that ω is a weight on S if ω : S −→ [1,+∞[, is a map satisfying: ∑ n∈S ω(n) 1 1−p < +∞. We consider the weighted space: `(S, ω) = { (a(n))n∈S ∈ C S : ∑ n∈S |a(n)| ω(n) < +∞ } . Endowed with the norm |·|p,ω defined by: |a|p,ω = (∑ n∈S |a(n)| ω(n) ) 1 p for every (a(n))n∈S ∈ ` (S, ω), the space `(S,ω) becomes a Banach subspace of ` (S). We say that the weight ω is m-convolutive if a positive constant γ = γ(ω) exists such that: ω 1 1−p ∗ ω 1 1−p ≤ γ ω 1 1−p , where ∗ denotes the convolution product. If a= (a(n))n∈S ∈ `(S, ω), we define the complex function F(a) by F(a)(t) = ∑ n∈S a(n)e for every t ∈ R. Received February 6, 2020; Revised April 8, 2020; Accepted July 2, 2020. 2010 Mathematics Subject Classification. 46J10, 46H30.
序列的乘法器加权空间
考虑1 < p < +∞的加权空间' p(S, φ)和' p(S, ψ),其中φ和ψ是S (= N或Z)上的权重。我们得到了' p(S, ψ)是' p(S, φ)和' p(S, ψ)的乘子加权空间的一个充分条件。我们的条件刻画了S = Z的最后一个乘子加权空间。因此,在ψ = φ的特殊情况下,加权空间' p(Z,ψ)是一个卷积代数。1. 设S (S = N或S = Z), p∈]1,+∞[。如果ω: S−→[1,+∞]是一个映射,满足∑n∈S ω(n) 1 1−p < +∞,则ω是S上的一个权值。我们考虑加权空间:“(年代,ω)= {(n (n))∈∈C年代:∑n∈年代| (n) |ω(n) < +∞}。赋予范数|·|p,ω定义为:|a|p,ω =(∑n∈S |a(n)| ω(n)) 1p,对于每一个(a(n))n∈S∈' (S,ω),空间' (S,ω)成为' (S)的Banach子空间。我们说权ω是m-卷积的,如果一个正常数γ = γ(ω)存在,使得:ω 1 1−p∗ω 1 1−p≤γ ω 1 1−p,其中∗表示卷积积。若a= (a(n))n∈S∈' (S, ω),则对于每个t∈r,我们定义复函数F(a) by F(a)(t) =∑n∈S a(n)e2020年4月8日修订;2020年7月2日录用。2010数学学科分类。46J10, 46H30。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊介绍: This journal endeavors to publish significant research and survey of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of four issues (January, April, July, October).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信