{"title":"AN EXTENSION OF ANNIHILATING-IDEAL GRAPH OF COMMUTATIVE RINGS","authors":"Mahtab Koohi Kerahroodi, Fatemeh Nabaei","doi":"10.4134/CKMS.C200006","DOIUrl":null,"url":null,"abstract":"Let R be a commutative ring with unity. The extension of annihilating-ideal graph of R, AG(R), is the graph whose vertices are nonzero annihilating ideals of R and two distinct vertices I and J are adjacent if and only if there exist n,m ∈ N such that InJm = (0) with In, Jm 6= (0). First, we differentiate when AG(R) and AG(R) coincide. Then, we have characterized the diameter and the girth of AG(R) when R is a finite direct products of rings. Moreover, we show that AG(R) contains a cycle, if AG(R) 6= AG(R).","PeriodicalId":45637,"journal":{"name":"Communications of the Korean Mathematical Society","volume":"35 1","pages":"1045-1056"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the Korean Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/CKMS.C200006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let R be a commutative ring with unity. The extension of annihilating-ideal graph of R, AG(R), is the graph whose vertices are nonzero annihilating ideals of R and two distinct vertices I and J are adjacent if and only if there exist n,m ∈ N such that InJm = (0) with In, Jm 6= (0). First, we differentiate when AG(R) and AG(R) coincide. Then, we have characterized the diameter and the girth of AG(R) when R is a finite direct products of rings. Moreover, we show that AG(R) contains a cycle, if AG(R) 6= AG(R).
期刊介绍:
This journal endeavors to publish significant research and survey of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of four issues (January, April, July, October).