AN EXTENSION OF ANNIHILATING-IDEAL GRAPH OF COMMUTATIVE RINGS

Pub Date : 2020-01-01 DOI:10.4134/CKMS.C200006
Mahtab Koohi Kerahroodi, Fatemeh Nabaei
{"title":"AN EXTENSION OF ANNIHILATING-IDEAL GRAPH OF COMMUTATIVE RINGS","authors":"Mahtab Koohi Kerahroodi, Fatemeh Nabaei","doi":"10.4134/CKMS.C200006","DOIUrl":null,"url":null,"abstract":"Let R be a commutative ring with unity. The extension of annihilating-ideal graph of R, AG(R), is the graph whose vertices are nonzero annihilating ideals of R and two distinct vertices I and J are adjacent if and only if there exist n,m ∈ N such that InJm = (0) with In, Jm 6= (0). First, we differentiate when AG(R) and AG(R) coincide. Then, we have characterized the diameter and the girth of AG(R) when R is a finite direct products of rings. Moreover, we show that AG(R) contains a cycle, if AG(R) 6= AG(R).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/CKMS.C200006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be a commutative ring with unity. The extension of annihilating-ideal graph of R, AG(R), is the graph whose vertices are nonzero annihilating ideals of R and two distinct vertices I and J are adjacent if and only if there exist n,m ∈ N such that InJm = (0) with In, Jm 6= (0). First, we differentiate when AG(R) and AG(R) coincide. Then, we have characterized the diameter and the girth of AG(R) when R is a finite direct products of rings. Moreover, we show that AG(R) contains a cycle, if AG(R) 6= AG(R).
分享
查看原文
交换环的湮灭理想图的推广
设R是一个有单位的交换环。R的湮灭理想图AG(R)的扩展是顶点为R的非零湮灭理想且两个不同的顶点I和J相邻的图,当且仅当n,m∈n使得InJm =(0)与In, Jm 6=(0)。首先,我们区分AG(R)与AG(R)重合的情况。然后,我们刻画了当R是环的有限直积时AG(R)的直径和周长。此外,我们证明了AG(R)包含一个环,如果AG(R) 6= AG(R)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信