Interactive Visualization for Fostering Trust in ML (Dagstuhl Seminar 22351)

Polo Chau, Alex Endert, Daniel A. Keim, Daniela Oelke
{"title":"Interactive Visualization for Fostering Trust in ML (Dagstuhl Seminar 22351)","authors":"Polo Chau, Alex Endert, Daniel A. Keim, Daniela Oelke","doi":"10.4230/DagRep.12.8.103","DOIUrl":null,"url":null,"abstract":"The use of artificial intelligence continues to impact a broad variety of domains, application areas, and people. However, interpretability, understandability, responsibility, accountability, and fairness of the algorithms’ results – all crucial for increasing humans’ trust into the systems – are still largely missing. The purpose of this seminar is to understand how these components factor into the holistic view of trust. Further, this seminar seeks to identify design guidelines and best practices for how to build interactive visualization systems to calibrate trust.","PeriodicalId":91064,"journal":{"name":"Dagstuhl reports","volume":"12 1","pages":"103-116"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dagstuhl reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/DagRep.12.8.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of artificial intelligence continues to impact a broad variety of domains, application areas, and people. However, interpretability, understandability, responsibility, accountability, and fairness of the algorithms’ results – all crucial for increasing humans’ trust into the systems – are still largely missing. The purpose of this seminar is to understand how these components factor into the holistic view of trust. Further, this seminar seeks to identify design guidelines and best practices for how to build interactive visualization systems to calibrate trust.
交互式可视化促进ML中的信任(Dagstuhl Seminar 22351)
人工智能的使用继续影响着各种各样的领域、应用领域和人们。然而,算法结果的可解释性、可理解性、责任、问责制和公平性——所有这些对于增加人类对系统的信任至关重要——在很大程度上仍然缺失。本次研讨会的目的是了解这些因素如何影响信任的整体观。此外,本次研讨会旨在确定如何建立交互式可视化系统来校准信任的设计准则和最佳实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信