Understanding I/O Behavior in Scientific and Data-Intensive Computing (Dagstuhl Seminar 21332)

P. Carns, J. Kunkel, K. Mohror, M. Schulz
{"title":"Understanding I/O Behavior in Scientific and Data-Intensive Computing (Dagstuhl Seminar 21332)","authors":"P. Carns, J. Kunkel, K. Mohror, M. Schulz","doi":"10.4230/DagRep.11.7.16","DOIUrl":null,"url":null,"abstract":"Two key changes are driving an immediate need for deeper understanding of I/O workloads in highperformance computing (HPC): applications are evolving beyond the traditional bulk-synchronous models to include integrated multistep workflows, in situ analysis, artificial intelligence, and data analytics methods; and storage systems designs are evolving beyond a two-tiered file system and archive model to complex hierarchies containing temporary, fast tiers of storage close to compute resources with markedly different performance properties. Both of these changes represent a significant departure from the decades-long status quo and require investigation from storage researchers and practitioners to understand their impacts on overall I/O performance. Without an in-depth understanding of I/O workload behavior, storage system designers, I/O middleware developers, facility operators, and application developers will not know how best to design or utilize the additional tiers for optimal performance of a given I/O workload. The goal of this Dagstuhl Seminar was to bring together experts in I/O performance analysis and storage system architecture to collectively evaluate how our community is capturing and analyzing I/O workloads on HPC systems, identify any gaps in our methodologies, and determine how to develop a better in-depth understanding of their impact on HPC systems. Our discussions were lively and resulted in identifying critical needs for research in the area of understanding I/O behavior. We document those discussions in this report. Seminar August 15–20, 2021 – https://www.dagstuhl.de/21332 2012 ACM Subject Classification General and reference → General literature; Hardware → 3D integrated circuits; Software and its engineering → Software design engineering; Networks → Network performance analysis","PeriodicalId":91064,"journal":{"name":"Dagstuhl reports","volume":"11 1","pages":"16-75"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dagstuhl reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/DagRep.11.7.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Two key changes are driving an immediate need for deeper understanding of I/O workloads in highperformance computing (HPC): applications are evolving beyond the traditional bulk-synchronous models to include integrated multistep workflows, in situ analysis, artificial intelligence, and data analytics methods; and storage systems designs are evolving beyond a two-tiered file system and archive model to complex hierarchies containing temporary, fast tiers of storage close to compute resources with markedly different performance properties. Both of these changes represent a significant departure from the decades-long status quo and require investigation from storage researchers and practitioners to understand their impacts on overall I/O performance. Without an in-depth understanding of I/O workload behavior, storage system designers, I/O middleware developers, facility operators, and application developers will not know how best to design or utilize the additional tiers for optimal performance of a given I/O workload. The goal of this Dagstuhl Seminar was to bring together experts in I/O performance analysis and storage system architecture to collectively evaluate how our community is capturing and analyzing I/O workloads on HPC systems, identify any gaps in our methodologies, and determine how to develop a better in-depth understanding of their impact on HPC systems. Our discussions were lively and resulted in identifying critical needs for research in the area of understanding I/O behavior. We document those discussions in this report. Seminar August 15–20, 2021 – https://www.dagstuhl.de/21332 2012 ACM Subject Classification General and reference → General literature; Hardware → 3D integrated circuits; Software and its engineering → Software design engineering; Networks → Network performance analysis
理解科学和数据密集型计算中的I/O行为(Dagstuhl Seminar 21332)
两个关键的变化推动了对高性能计算(HPC)中I/O工作负载的更深入理解的迫切需求:应用程序正在超越传统的批量同步模型,包括集成的多步骤工作流、原位分析、人工智能和数据分析方法;存储系统的设计正在从两层文件系统和存档模型演变为复杂的层次结构,其中包含临时的、快速的存储层,这些存储层靠近具有显著不同性能属性的计算资源。这两种变化都代表了几十年来现状的重大改变,需要存储研究人员和从业者进行调查,以了解它们对整体I/O性能的影响。如果没有对I/O工作负载行为的深入了解,存储系统设计人员、I/O中间件开发人员、设施操作人员和应用程序开发人员将不知道如何最好地设计或利用额外的层来优化给定I/O工作负载的性能。本次Dagstuhl研讨会的目标是将I/O性能分析和存储系统架构方面的专家聚集在一起,共同评估我们的社区如何捕获和分析HPC系统上的I/O工作负载,确定我们方法中的任何差距,并确定如何更好地深入了解它们对HPC系统的影响。我们的讨论非常活跃,最终确定了在理解I/O行为方面的关键研究需求。我们在本报告中记录了这些讨论。研讨会2021年8月15-20日- https://www.dagstuhl.de/21332 2012 ACM学科分类一般与参考文献→一般文献;硬件→3D集成电路;软件及其工程→软件设计工程;网络→网络性能分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信