{"title":"A DNA metabarcoding protocol for hyporheic freshwater meiofauna: Evaluating highly degenerate COI primers and replication strategy","authors":"Alexander M. Weigand, Jan-Niklas Macher","doi":"10.3897/MBMG.2.26869","DOIUrl":null,"url":null,"abstract":"The hyporheic zone, i.e. the ecotone between surface water and the groundwater, is a rarely studied freshwater ecosystem. Hyporheic taxa are often meiofaunal (<1 mm) in size and difficult to identify based on morphology. Metabarcoding approaches are promising for the study of these environments and taxa, but it is yet unclear if commonly applied metabarcoding primers and replication strategies can be used. In this study, we took sediment cores from two near natural upstream (NNU) and two ecologically improved downstream (EID) sites in the Boye catchment (Emscher River, Germany), metabarcoding their meiofaunal communities. We evaluated the usability of a commonly used, highly degenerate COI primer pair (BF2/BR2) and tested how sequencing three PCR replicates per sample and removing MOTUs present in only one out of three replicates impacts the inferred community composition. A total of 22,514 MOTUs were detected, of which only 263 were identified as Metazoa. Our results highlight the gaps in reference databases for meiofaunal taxa and the potential problems of using highly degenerate primers for studying samples containing a high number of non-metazoan taxa. Alpha diversity was higher in EID sites and showed higher community similarity when compared to NNU sites. Beta diversity analyses showed that removing MOTUs detected in only one out of three replicates per site greatly increased community similarity in samples. Sequencing three sample replicates and removing rare MOTUs is seen as a good compromise between retaining too many false-positives and introducing too many false-negatives. We conclude that metabarcoding hyporheic communities using highly degenerate COI primers can provide valuable first insights into the diversity of these ecosystems and highlight some potential application scenarios.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabarcoding and Metagenomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/MBMG.2.26869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The hyporheic zone, i.e. the ecotone between surface water and the groundwater, is a rarely studied freshwater ecosystem. Hyporheic taxa are often meiofaunal (<1 mm) in size and difficult to identify based on morphology. Metabarcoding approaches are promising for the study of these environments and taxa, but it is yet unclear if commonly applied metabarcoding primers and replication strategies can be used. In this study, we took sediment cores from two near natural upstream (NNU) and two ecologically improved downstream (EID) sites in the Boye catchment (Emscher River, Germany), metabarcoding their meiofaunal communities. We evaluated the usability of a commonly used, highly degenerate COI primer pair (BF2/BR2) and tested how sequencing three PCR replicates per sample and removing MOTUs present in only one out of three replicates impacts the inferred community composition. A total of 22,514 MOTUs were detected, of which only 263 were identified as Metazoa. Our results highlight the gaps in reference databases for meiofaunal taxa and the potential problems of using highly degenerate primers for studying samples containing a high number of non-metazoan taxa. Alpha diversity was higher in EID sites and showed higher community similarity when compared to NNU sites. Beta diversity analyses showed that removing MOTUs detected in only one out of three replicates per site greatly increased community similarity in samples. Sequencing three sample replicates and removing rare MOTUs is seen as a good compromise between retaining too many false-positives and introducing too many false-negatives. We conclude that metabarcoding hyporheic communities using highly degenerate COI primers can provide valuable first insights into the diversity of these ecosystems and highlight some potential application scenarios.