A generating function of a complex Lagrangian cone in $\mathbf{H}^n$

IF 0.7 4区 数学 Q2 MATHEMATICS
N. Ejiri
{"title":"A generating function of a complex Lagrangian cone in $\\mathbf{H}^n$","authors":"N. Ejiri","doi":"10.4310/cag.2022.v30.n9.a2","DOIUrl":null,"url":null,"abstract":"We formulate the space of multivalued branched minimal immersions of compact Riemann surfaces of genus γ ≥ 2 into R, and show that it is a complex analytic set. If an irreducible component of the complex analytic set admits a non-degenerate critical point, then we construct a complex Lagrangian cone in H derived from the complex period map, and obtain its applications as follows: The irreducible component can be divided among some open connected components of non-degenerate critical points, and each connected component admits a special pseudo Kähler structure with the signature (p, q). We induce a sharp inequality between q and the Morse index of a minimal surface which are two invariants of the connected component. Furtheremore, we obtain an algorithm to compute the Morse index and the signature.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2022.v30.n9.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We formulate the space of multivalued branched minimal immersions of compact Riemann surfaces of genus γ ≥ 2 into R, and show that it is a complex analytic set. If an irreducible component of the complex analytic set admits a non-degenerate critical point, then we construct a complex Lagrangian cone in H derived from the complex period map, and obtain its applications as follows: The irreducible component can be divided among some open connected components of non-degenerate critical points, and each connected component admits a special pseudo Kähler structure with the signature (p, q). We induce a sharp inequality between q and the Morse index of a minimal surface which are two invariants of the connected component. Furtheremore, we obtain an algorithm to compute the Morse index and the signature.
$\mathbf{H}^n$中复拉格朗日锥的生成函数
我们将γ≥2属的紧黎曼曲面的多值分支极小浸入空间化为R,并证明了它是一个复解析集。如果复解析集的一个不可约分量存在一个非退化临界点,那么我们在H中构造了一个由复周期映射导出的复拉格朗日锥,并得到了它的应用:不可约分量可以划分为若干具有非简并临界点的开放连通分量,每个连通分量都有一个特殊的伪Kähler结构,其特征为(p, q)。我们在连通分量的两个不变量q与极小曲面的莫尔斯指数之间推导出一个尖锐不等式。此外,我们还得到了一种计算摩尔斯指数和签名的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信