On the analogy between real reductive groups and Cartan motion groups: the Mackey–Higson bijection

IF 1.8 2区 数学 Q1 MATHEMATICS
Alexandre Afgoustidis
{"title":"On the analogy between real reductive groups and Cartan motion groups: the Mackey–Higson bijection","authors":"Alexandre Afgoustidis","doi":"10.4310/cjm.2021.v9.n3.a1","DOIUrl":null,"url":null,"abstract":"George Mackey suggested in 1975 that there should be analogies between the irreducible unitary representations of a noncompact reductive Lie group $G$ and those of its Cartan motion group $G_0$ $-$ the semidirect product of a maximal compact subgroup of $G$ and a vector space. He conjectured the existence of a natural one-to-one correspondence between \"most\" irreducible (tempered) representations of $G$ and \"most\" irreducible (unitary) representations of $G_0$. We here describe a simple and natural bijection between the tempered duals of both groups, and an extension to a one-to-one correspondence between the admissible duals.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2015-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2021.v9.n3.a1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

George Mackey suggested in 1975 that there should be analogies between the irreducible unitary representations of a noncompact reductive Lie group $G$ and those of its Cartan motion group $G_0$ $-$ the semidirect product of a maximal compact subgroup of $G$ and a vector space. He conjectured the existence of a natural one-to-one correspondence between "most" irreducible (tempered) representations of $G$ and "most" irreducible (unitary) representations of $G_0$. We here describe a simple and natural bijection between the tempered duals of both groups, and an extension to a one-to-one correspondence between the admissible duals.
实约化群与Cartan运动群的类比:麦基-希格森双射
George Mackey在1975年提出了非紧约李群$G$的不可约酉表示与它的Cartan运动群$G_0$ $-$ G$的极大紧子群与向量空间的半直积的不可约酉表示之间存在类比。他推测在$G$的“最”不可约(调质)表示和$G_0$的“最”不可约(酉)表示之间存在一种自然的一对一对应关系。我们在这里描述了两个群的调和对偶之间的简单和自然的双射,以及可容许对偶之间一对一对应的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信