One-sided curvature estimates for H-disks

IF 1.8 2区 数学 Q1 MATHEMATICS
W. Meeks, G. Tinaglia
{"title":"One-sided curvature estimates for H-disks","authors":"W. Meeks, G. Tinaglia","doi":"10.4310/cjm.2020.v8.n3.a2","DOIUrl":null,"url":null,"abstract":"In this paper we prove an extrinsic one-sided curvature estimate for disks embedded in $\\mathbb{R}^3$ with constant mean curvature which is independent of the value of the constant mean curvature. We apply this extrinsic one-sided curvature estimate in [24] to prove to prove a weak chord arc type result for these disks. In Section 4 we apply this weak chord arc result to obtain an intrinsic version of the one-sided curvature estimate for disks embedded in $\\mathbb{R}^3$ with constant mean curvature. In a natural sense, these one-sided curvature estimates generalize respectively, the extrinsic and intrinsic one-sided curvature estimates for minimal disks embedded in $\\mathbb{R}^3$ given by Colding and Minicozzi in Theorem 0.2 of [8] and in Corollary 0.8 of [9].","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2014-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2020.v8.n3.a2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we prove an extrinsic one-sided curvature estimate for disks embedded in $\mathbb{R}^3$ with constant mean curvature which is independent of the value of the constant mean curvature. We apply this extrinsic one-sided curvature estimate in [24] to prove to prove a weak chord arc type result for these disks. In Section 4 we apply this weak chord arc result to obtain an intrinsic version of the one-sided curvature estimate for disks embedded in $\mathbb{R}^3$ with constant mean curvature. In a natural sense, these one-sided curvature estimates generalize respectively, the extrinsic and intrinsic one-sided curvature estimates for minimal disks embedded in $\mathbb{R}^3$ given by Colding and Minicozzi in Theorem 0.2 of [8] and in Corollary 0.8 of [9].
h盘的单侧曲率估计
本文证明了嵌入在$\mathbb{R}^3$中的具有常平均曲率的圆盘的一个与常平均曲率值无关的外在单侧曲率估计。我们在[24]中应用这一外在单侧曲率估计来证明这些圆盘的弱弦弧型结果。在第4节中,我们应用这个弱弦弧结果来获得嵌入在$\mathbb{R}^3$中具有恒定平均曲率的圆盘的单侧曲率估计的内在版本。在自然意义上,这些单侧曲率估计分别推广了由Colding和Minicozzi在[8]的定理0.2和[9]的推论0.8中给出的嵌入在$\mathbb{R}^3$中的最小盘的外在和内在单侧曲率估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信