$(1,1)$ forms with specified Lagrangian phase: a priori estimates and algebraic obstructions

IF 1.8 2区 数学 Q1 MATHEMATICS
Tristan C. Collins, Adam Jacob, S. Yau
{"title":"$(1,1)$ forms with specified Lagrangian phase: a priori estimates and algebraic obstructions","authors":"Tristan C. Collins, Adam Jacob, S. Yau","doi":"10.4310/cjm.2020.v8.n2.a4","DOIUrl":null,"url":null,"abstract":"Let $(X,\\alpha)$ be a K\\\"ahler manifold of dimension n, and let $[\\omega] \\in H^{1,1}(X,\\mathbb{R})$. We study the problem of specifying the Lagrangian phase of $\\omega$ with respect to $\\alpha$, which is described by the nonlinear elliptic equation \\[ \\sum_{i=1}^{n} \\arctan(\\lambda_i)= h(x) \\] where $\\lambda_i$ are the eigenvalues of $\\omega$ with respect to $\\alpha$. When $h(x)$ is a topological constant, this equation corresponds to the deformed Hermitian-Yang-Mills (dHYM) equation, and is related by Mirror Symmetry to the existence of special Lagrangian submanifolds of the mirror. We introduce a notion of subsolution for this equation, and prove a priori $C^{2,\\beta}$ estimates when $|h|>(n-2)\\frac{\\pi}{2}$ and a subsolution exists. Using the method of continuity we show that the dHYM equation admits a smooth solution in the supercritical phase case, whenever a subsolution exists. Finally, we discover some stability-type cohomological obstructions to the existence of solutions to the dHYM equation and we conjecture that when these obstructions vanish the dHYM equation admits a solution. We confirm this conjecture for complex surfaces.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2015-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2020.v8.n2.a4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 76

Abstract

Let $(X,\alpha)$ be a K\"ahler manifold of dimension n, and let $[\omega] \in H^{1,1}(X,\mathbb{R})$. We study the problem of specifying the Lagrangian phase of $\omega$ with respect to $\alpha$, which is described by the nonlinear elliptic equation \[ \sum_{i=1}^{n} \arctan(\lambda_i)= h(x) \] where $\lambda_i$ are the eigenvalues of $\omega$ with respect to $\alpha$. When $h(x)$ is a topological constant, this equation corresponds to the deformed Hermitian-Yang-Mills (dHYM) equation, and is related by Mirror Symmetry to the existence of special Lagrangian submanifolds of the mirror. We introduce a notion of subsolution for this equation, and prove a priori $C^{2,\beta}$ estimates when $|h|>(n-2)\frac{\pi}{2}$ and a subsolution exists. Using the method of continuity we show that the dHYM equation admits a smooth solution in the supercritical phase case, whenever a subsolution exists. Finally, we discover some stability-type cohomological obstructions to the existence of solutions to the dHYM equation and we conjecture that when these obstructions vanish the dHYM equation admits a solution. We confirm this conjecture for complex surfaces.
具有特定拉格朗日相的$(1,1)$形式:先验估计和代数障碍
设$(X,\alpha)$是一个n维的Kähler流形,设$[\omega] \in H^{1,1}(X,\mathbb{R})$。研究了求解$\omega$相对于$\alpha$的拉格朗日相的问题,该问题用非线性椭圆方程\[ \sum_{i=1}^{n} \arctan(\lambda_i)= h(x) \]来描述,其中$\lambda_i$为$\omega$相对于$\alpha$的特征值。当$h(x)$为拓扑常数时,该方程对应于变形的Hermitian-Yang-Mills (dHYM)方程,并通过镜像对称性与该镜像的特殊拉格朗日子流形的存在性联系起来。我们引入了该方程的子解的概念,并证明了$|h|>(n-2)\frac{\pi}{2}$和子解存在时的先验$C^{2,\beta}$估计。用连续性方法证明了在超临界相情况下,只要存在子解,dHYM方程就有光滑解。最后,我们发现了dHYM方程解存在的一些稳定型上同调障碍,并推测当这些障碍消失时,dHYM方程存在解。我们在复杂曲面上证实了这个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信