Generalized Kähler Taub-NUT metrics and two exceptional instantons

IF 0.7 4区 数学 Q2 MATHEMATICS
Brian Weber
{"title":"Generalized Kähler Taub-NUT metrics and two exceptional instantons","authors":"Brian Weber","doi":"10.4310/cag.2022.v30.n7.a5","DOIUrl":null,"url":null,"abstract":"We study the one-parameter family of twisted Kahler Taub-NUT metrics (discovered by Donaldson), along with two exceptional Taub-NUT-like instantons, and understand them to the extend that should be sufficient for blow-up and gluing arguments. In particular we parametrize their geodesics from the origin, determine curvature fall-off rates, volume growth rates for metric balls, and find blow-down limits.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2022.v30.n7.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We study the one-parameter family of twisted Kahler Taub-NUT metrics (discovered by Donaldson), along with two exceptional Taub-NUT-like instantons, and understand them to the extend that should be sufficient for blow-up and gluing arguments. In particular we parametrize their geodesics from the origin, determine curvature fall-off rates, volume growth rates for metric balls, and find blow-down limits.
广义Kähler Taub-NUT度量和两个例外实例
我们研究了扭曲Kahler Taub-NUT度量的单参数家族(由Donaldson发现),以及两个例外的Taub-NUT-样瞬子,并将它们理解到足以进行膨胀和粘滞论证的程度。特别是,我们从原点参数化它们的测地线,确定曲率衰减率,公制球的体积增长率,并找到吹落极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信