Non-concavity of the Robin ground state

IF 1.8 2区 数学 Q1 MATHEMATICS
B. Andrews, J. Clutterbuck, Daniel Hauer
{"title":"Non-concavity of the Robin ground state","authors":"B. Andrews, J. Clutterbuck, Daniel Hauer","doi":"10.4310/cjm.2020.v8.n2.a1","DOIUrl":null,"url":null,"abstract":"On a convex bounded Euclidean domain, the ground state for the Laplacian with Neumann boundary conditions is a constant, while the Dirichlet ground state is log-concave. The Robin eigenvalue problem can be considered as interpolating between the Dirichlet and Neumann cases, so it seems natural that the Robin ground state should have similar concavity properties. In this paper we show that this is false, by analysing the perturbation problem from the Neumann case. In particular we prove that on polyhedral convex domains, except in very special cases (which we completely classify) the variation of the ground state with respect to the Robin parameter is not a concave function. We conclude from this that the Robin ground state is not log-concave (and indeed even has some superlevel sets which are non-convex) for small Robin parameter on polyhedral convex domains outside a special class, and hence also on arbitrary convex domains which approximate these in Hausdorff distance.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2020.v8.n2.a1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

On a convex bounded Euclidean domain, the ground state for the Laplacian with Neumann boundary conditions is a constant, while the Dirichlet ground state is log-concave. The Robin eigenvalue problem can be considered as interpolating between the Dirichlet and Neumann cases, so it seems natural that the Robin ground state should have similar concavity properties. In this paper we show that this is false, by analysing the perturbation problem from the Neumann case. In particular we prove that on polyhedral convex domains, except in very special cases (which we completely classify) the variation of the ground state with respect to the Robin parameter is not a concave function. We conclude from this that the Robin ground state is not log-concave (and indeed even has some superlevel sets which are non-convex) for small Robin parameter on polyhedral convex domains outside a special class, and hence also on arbitrary convex domains which approximate these in Hausdorff distance.
罗宾基态的非凹性
在凸有界欧几里得域上,具有诺伊曼边界条件的拉普拉斯方程的基态是常数,而狄利克雷方程的基态是对数凹。Robin特征值问题可以看作是Dirichlet和Neumann情况之间的插值,因此Robin基态应该具有相似的凹性是很自然的。在本文中,我们通过分析来自诺伊曼情况的摄动问题来证明这是错误的。特别地,我们证明了在多面体凸域上,除了在非常特殊的情况下(我们完全分类),基态关于Robin参数的变化不是一个凹函数。由此我们得出结论,在一个特殊类外的多面体凸域上,对于小Robin参数的Robin基态不是对数凹的(甚至有一些非凸的超水平集),因此在豪斯多夫距离内近似于这些参数的任意凸域上也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信