An infinite-dimensional phenomenon in finite-dimensional metric topology

IF 1.8 2区 数学 Q1 MATHEMATICS
A. Dranishnikov, S. Ferry, S. Weinberger
{"title":"An infinite-dimensional phenomenon in finite-dimensional metric topology","authors":"A. Dranishnikov, S. Ferry, S. Weinberger","doi":"10.4310/cjm.2020.v8.n1.a2","DOIUrl":null,"url":null,"abstract":"We show that there are homotopy equivalences $h:N\\to M$ between closed manifolds which are induced by cell-like maps $p:N\\to X$ and $q:M\\to X$ but which are not homotopic to homeomorphisms. The phenomenon is based on construction of cell-like maps that kill certain $\\mathbb L$-classes. The image space in these constructions is necessarily infinite-dimensional. In dimension $>6$ we classify all such homotopy equivalences. As an application, we show that such homotopy equivalences are realized by deformations of Riemannian manifolds in Gromov-Hausdorff space preserving a contractibility function.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2006-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2020.v8.n1.a2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We show that there are homotopy equivalences $h:N\to M$ between closed manifolds which are induced by cell-like maps $p:N\to X$ and $q:M\to X$ but which are not homotopic to homeomorphisms. The phenomenon is based on construction of cell-like maps that kill certain $\mathbb L$-classes. The image space in these constructions is necessarily infinite-dimensional. In dimension $>6$ we classify all such homotopy equivalences. As an application, we show that such homotopy equivalences are realized by deformations of Riemannian manifolds in Gromov-Hausdorff space preserving a contractibility function.
有限维度量拓扑中的无限维现象
我们证明了闭流形之间存在着$h:N\到M$的同伦等价,它们是由类胞映射$p:N\到X$和$q:M\到X$引起的,但它们不是同胚的同伦等价。这种现象是基于类似细胞的映射的构造,它杀死了某些$\mathbb L$-类。这些结构中的象空间必然是无限维的。在维数$ bbb6 $中,我们对所有这样的同伦等价进行分类。作为一个应用,我们证明了这种同伦等价是通过在Gromov-Hausdorff空间中保持可缩并函数的黎曼流形的变形来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信