Poisson wave trace formula for Dirac resonances at spectrum edges and applications

Pub Date : 2021-01-01 DOI:10.4310/ajm.2021.v25.n2.a5
B. Cheng, M. Melgaard
{"title":"Poisson wave trace formula for Dirac resonances at spectrum edges and applications","authors":"B. Cheng, M. Melgaard","doi":"10.4310/ajm.2021.v25.n2.a5","DOIUrl":null,"url":null,"abstract":"We study the self-adjoint Dirac operators D = D0 + V (x), where D0 is the free three-dimensional Dirac operator and V (x) is a smooth compactly supported Hermitian matrix potential. We define resonances of D as poles of the meromorphic continuation of its cut-off resolvent. By analyzing the resolvent behaviour at the spectrum edges ±m, we establish a generalized Birman-Krein formula, taking into account possible resonances at ±m. As an application of the new Birman-Krein formula we establish the Poisson wave trace formula in its full generality. The Poisson wave trace formula links the resonances with the trace of the difference of the wave groups. The Poisson wave trace formula, in conjunction with asymptotics of the scattering phase, allows us to prove that, under certain natural assumptions on V , the perturbed Dirac operator has infinitely many resonances; a result similar in nature to Melrose’s classic 1995 result for Schr¨odinger operators.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n2.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the self-adjoint Dirac operators D = D0 + V (x), where D0 is the free three-dimensional Dirac operator and V (x) is a smooth compactly supported Hermitian matrix potential. We define resonances of D as poles of the meromorphic continuation of its cut-off resolvent. By analyzing the resolvent behaviour at the spectrum edges ±m, we establish a generalized Birman-Krein formula, taking into account possible resonances at ±m. As an application of the new Birman-Krein formula we establish the Poisson wave trace formula in its full generality. The Poisson wave trace formula links the resonances with the trace of the difference of the wave groups. The Poisson wave trace formula, in conjunction with asymptotics of the scattering phase, allows us to prove that, under certain natural assumptions on V , the perturbed Dirac operator has infinitely many resonances; a result similar in nature to Melrose’s classic 1995 result for Schr¨odinger operators.
分享
查看原文
谱边狄拉克共振的泊松波迹公式及其应用
研究了自伴随狄拉克算子D = D0 + V (x),其中D0是自由三维狄拉克算子,V (x)是光滑紧支持厄米矩阵势。我们将D的共振定义为其截止解的亚纯延拓的极点。通过分析光谱边缘±m处的解析行为,我们建立了一个广义的Birman-Krein公式,考虑了±m处可能的共振。作为新Birman-Krein公式的一个应用,我们建立了具有完全普遍性的泊松波迹公式。泊松波迹公式将共振与波群的差迹联系起来。泊松波迹公式,结合散射相位的渐近性,允许我们证明,在V上的某些自然假设下,扰动狄拉克算子具有无限多个共振;本质上类似于梅尔罗斯1995年关于薛定谔算子的经典结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信