{"title":"Convergence of discrete conformal geometry and computation of uniformization maps","authors":"D. Gu, F. Luo, Tianqi Wu","doi":"10.4310/AJM.2019.V23.N1.A2","DOIUrl":null,"url":null,"abstract":"The classical uniformization theorem of Poincaré and Koebe states that any simply connected surface with a Riemannian metric is conformally diffeomorphic to the Riemann sphere, or the complex plane or the unit disk. Using the work by Gu-Luo-Sun-Wu [9] on discrete conformal geometry for polyhedral surfaces, we show that the uniformization maps for simply connected Riemann surfaces are computable.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/AJM.2019.V23.N1.A2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 37
Abstract
The classical uniformization theorem of Poincaré and Koebe states that any simply connected surface with a Riemannian metric is conformally diffeomorphic to the Riemann sphere, or the complex plane or the unit disk. Using the work by Gu-Luo-Sun-Wu [9] on discrete conformal geometry for polyhedral surfaces, we show that the uniformization maps for simply connected Riemann surfaces are computable.