A Model for the Mass-Growth of Wild-Caught Fish

Katharina Renner-Martin, N. Brunner, M. Kühleitner, W. Nowak, K. Scheicher
{"title":"A Model for the Mass-Growth of Wild-Caught Fish","authors":"Katharina Renner-Martin, N. Brunner, M. Kühleitner, W. Nowak, K. Scheicher","doi":"10.4236/OJMSI.2019.71002","DOIUrl":null,"url":null,"abstract":"The paper searched for raw data about wild-caught fish, where a sigmoidal growth function described the mass growth significantly better than non-sigmoidal functions. Specifically, von Bertalanffy’s sigmoidal growth function (metabolic exponent-pair a = 2/3, b = 1) was compared with unbounded linear growth and with bounded exponential growth using the Akaike information criterion. Thereby the maximum likelihood fits were compared, assuming a lognormal distribution of mass (i.e. a higher variance for heavier animals). Starting from 70+ size-at-age data, the paper focused on 15 data coming from large datasets. Of them, six data with 400 - 20,000 data-points were suitable for sigmoidal growth modeling. For these, a custom-made optimization tool identified the best fitting growth function from the general von Bertalanffy-Putter class of models. This class generalizes the well-known models of Verhulst (logistic growth), Gompertz and von Bertalanffy. Whereas the best-fitting models varied widely, their exponent-pairs displayed a remarkable pattern, as their difference was close to 1/3 (example: von Bertalanffy exponent-pair). This defined a new class of models, for which the paper provided a biological motivation that relates growth to food consumption.","PeriodicalId":56990,"journal":{"name":"建模与仿真(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"建模与仿真(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJMSI.2019.71002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper searched for raw data about wild-caught fish, where a sigmoidal growth function described the mass growth significantly better than non-sigmoidal functions. Specifically, von Bertalanffy’s sigmoidal growth function (metabolic exponent-pair a = 2/3, b = 1) was compared with unbounded linear growth and with bounded exponential growth using the Akaike information criterion. Thereby the maximum likelihood fits were compared, assuming a lognormal distribution of mass (i.e. a higher variance for heavier animals). Starting from 70+ size-at-age data, the paper focused on 15 data coming from large datasets. Of them, six data with 400 - 20,000 data-points were suitable for sigmoidal growth modeling. For these, a custom-made optimization tool identified the best fitting growth function from the general von Bertalanffy-Putter class of models. This class generalizes the well-known models of Verhulst (logistic growth), Gompertz and von Bertalanffy. Whereas the best-fitting models varied widely, their exponent-pairs displayed a remarkable pattern, as their difference was close to 1/3 (example: von Bertalanffy exponent-pair). This defined a new class of models, for which the paper provided a biological motivation that relates growth to food consumption.
野生捕捞鱼类大量生长的模型
本文检索了野生鱼类的原始数据,其中s型生长函数明显优于非s型生长函数。具体而言,利用Akaike信息准则将von Bertalanffy的s型生长函数(代谢指数对a = 2/3, b = 1)与无界线性增长和有界指数增长进行比较。因此,最大似然拟合进行比较,假设质量为对数正态分布(即较重的动物方差较高)。从70多个年龄大小的数据开始,本文重点研究了来自大型数据集的15个数据。其中,有6个数据点在400 ~ 20000个数点之间,适合进行s型增长建模。对于这些,一个定制的优化工具从一般的von Bertalanffy-Putter类模型中识别出最适合的生长函数。该类推广了著名的Verhulst (logistic增长)、Gompertz和von Bertalanffy模型。尽管最佳拟合模型差异很大,但它们的指数对显示出一个显著的模式,因为它们的差异接近1/3(例如:von Bertalanffy指数对)。这定义了一类新的模型,论文为这些模型提供了一种将增长与食物消费联系起来的生物学动机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信