Katharina Renner-Martin, N. Brunner, M. Kühleitner, W. Nowak, K. Scheicher
{"title":"A Model for the Mass-Growth of Wild-Caught Fish","authors":"Katharina Renner-Martin, N. Brunner, M. Kühleitner, W. Nowak, K. Scheicher","doi":"10.4236/OJMSI.2019.71002","DOIUrl":null,"url":null,"abstract":"The paper searched for raw data about wild-caught fish, where a sigmoidal growth function described the mass growth significantly better than non-sigmoidal functions. Specifically, von Bertalanffy’s sigmoidal growth function (metabolic exponent-pair a = 2/3, b = 1) was compared with unbounded linear growth and with bounded exponential growth using the Akaike information criterion. Thereby the maximum likelihood fits were compared, assuming a lognormal distribution of mass (i.e. a higher variance for heavier animals). Starting from 70+ size-at-age data, the paper focused on 15 data coming from large datasets. Of them, six data with 400 - 20,000 data-points were suitable for sigmoidal growth modeling. For these, a custom-made optimization tool identified the best fitting growth function from the general von Bertalanffy-Putter class of models. This class generalizes the well-known models of Verhulst (logistic growth), Gompertz and von Bertalanffy. Whereas the best-fitting models varied widely, their exponent-pairs displayed a remarkable pattern, as their difference was close to 1/3 (example: von Bertalanffy exponent-pair). This defined a new class of models, for which the paper provided a biological motivation that relates growth to food consumption.","PeriodicalId":56990,"journal":{"name":"建模与仿真(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"建模与仿真(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJMSI.2019.71002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The paper searched for raw data about wild-caught fish, where a sigmoidal growth function described the mass growth significantly better than non-sigmoidal functions. Specifically, von Bertalanffy’s sigmoidal growth function (metabolic exponent-pair a = 2/3, b = 1) was compared with unbounded linear growth and with bounded exponential growth using the Akaike information criterion. Thereby the maximum likelihood fits were compared, assuming a lognormal distribution of mass (i.e. a higher variance for heavier animals). Starting from 70+ size-at-age data, the paper focused on 15 data coming from large datasets. Of them, six data with 400 - 20,000 data-points were suitable for sigmoidal growth modeling. For these, a custom-made optimization tool identified the best fitting growth function from the general von Bertalanffy-Putter class of models. This class generalizes the well-known models of Verhulst (logistic growth), Gompertz and von Bertalanffy. Whereas the best-fitting models varied widely, their exponent-pairs displayed a remarkable pattern, as their difference was close to 1/3 (example: von Bertalanffy exponent-pair). This defined a new class of models, for which the paper provided a biological motivation that relates growth to food consumption.