MULTIPLIERS OF DIRICHLET-TYPE SUBSPACES OF BLOCH SPACE

IF 0.5 4区 数学 Q3 MATHEMATICS
Songxiao Li, Zengjian Lou, Conghui Shen
{"title":"MULTIPLIERS OF DIRICHLET-TYPE SUBSPACES OF BLOCH SPACE","authors":"Songxiao Li, Zengjian Lou, Conghui Shen","doi":"10.4134/BKMS.B190302","DOIUrl":null,"url":null,"abstract":"Let M(X,Y ) denote the space of multipliers from X to Y, where X and Y are analytic function spaces. As we known, for Dirichlettype spaces D α, M(D p−1,D q q−1) = {0}, if p 6= q, 0 < p, q < ∞. If 0 < p, q < ∞, p 6= q, 0 < s < 1 such that p + s, q + s > 1, then M(D p−2+s,D q q−2+s) = {0}. However, X ∩ D p p−1 ⊆ X ∩ D q q−1 and X ∩ D p−2+s ⊆ X ∩ D q q−2+s whenever X is a subspace of the Bloch space B and 0 < p ≤ q < ∞. This says that the set of multipliers M(X ∩ D p−2+s, X∩D q q−2+s) is nontrivial. In this paper, we study the multipliers M(X ∩ D p−2+s, X ∩ D q q−2+s) for distinct classical subspaces X of the Bloch space B, where X = B, BMOA or H∞.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"57 1","pages":"429-441"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B190302","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let M(X,Y ) denote the space of multipliers from X to Y, where X and Y are analytic function spaces. As we known, for Dirichlettype spaces D α, M(D p−1,D q q−1) = {0}, if p 6= q, 0 < p, q < ∞. If 0 < p, q < ∞, p 6= q, 0 < s < 1 such that p + s, q + s > 1, then M(D p−2+s,D q q−2+s) = {0}. However, X ∩ D p p−1 ⊆ X ∩ D q q−1 and X ∩ D p−2+s ⊆ X ∩ D q q−2+s whenever X is a subspace of the Bloch space B and 0 < p ≤ q < ∞. This says that the set of multipliers M(X ∩ D p−2+s, X∩D q q−2+s) is nontrivial. In this paper, we study the multipliers M(X ∩ D p−2+s, X ∩ D q q−2+s) for distinct classical subspaces X of the Bloch space B, where X = B, BMOA or H∞.
Bloch空间的dirichlet型子空间的乘子
设M(X,Y)表示从X到Y的乘子空间,其中X和Y为解析函数空间。如我们所知,对于Dirichlettype空间D α, M(pdp−1,pdq q−1)={0},若p6 = q, 0 < p, q <∞。若0 < p, q <∞,p 6= q, 0 < s < 1,使得p +s, q +s > 1,则M(D p−2+s,D q q q−2+s) ={0}。当X是Bloch空间B的一个子空间且0 < p≤q <∞时,X∩pdp p−1,X∩pdq q q−1,X∩pdq q−2+s, X∩pdq q−2+s。这说明乘子集合M(X∩dp−2+s, X∩dq q−2+s)是非平凡的。本文研究了Bloch空间B中不同经典子空间X的乘子M(X∩p−2+s, X∩D q q−2+s),其中X = B, BMOA或H∞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信