Linear regression with many controls of limited explanatory power

IF 1.9 3区 经济学 Q2 ECONOMICS
Chenchuan Li, Ulrich K. Müller
{"title":"Linear regression with many controls of limited explanatory power","authors":"Chenchuan Li, Ulrich K. Müller","doi":"10.3982/QE1577","DOIUrl":null,"url":null,"abstract":"We consider inference about a scalar coefficient in a linear regression model. One previously considered approach to dealing with many controls imposes sparsity, that is, it is assumed known that nearly all control coefficients are (very nearly) zero. We instead impose a bound on the quadratic mean of the controls' effect on the dependent variable, which also has an interpretation as an R 2‐type bound on the explanatory power of the controls. We develop a simple inference procedure that exploits this additional information in general heteroskedastic models. We study its asymptotic efficiency properties and compare it to a sparsity‐based approach in a Monte Carlo study. The method is illustrated in three empirical applications.","PeriodicalId":46811,"journal":{"name":"Quantitative Economics","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.3982/QE1577","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 11

Abstract

We consider inference about a scalar coefficient in a linear regression model. One previously considered approach to dealing with many controls imposes sparsity, that is, it is assumed known that nearly all control coefficients are (very nearly) zero. We instead impose a bound on the quadratic mean of the controls' effect on the dependent variable, which also has an interpretation as an R 2‐type bound on the explanatory power of the controls. We develop a simple inference procedure that exploits this additional information in general heteroskedastic models. We study its asymptotic efficiency properties and compare it to a sparsity‐based approach in a Monte Carlo study. The method is illustrated in three empirical applications.
具有有限解释力的许多控制的线性回归
我们考虑线性回归模型中标量系数的推断。以前考虑过的一种处理许多控制的方法施加了稀疏性,也就是说,假设已知几乎所有的控制系数(非常接近)为零。相反,我们对控制对因变量的影响的二次平均值施加了一个界限,这也可以解释为控制的解释能力的r2型界限。我们开发了一个简单的推理程序,利用这些额外的信息在一般的异方差模型。我们研究了它的渐近效率性质,并在蒙特卡罗研究中将它与基于稀疏度的方法进行了比较。该方法在三个实证应用中得到了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
5.60%
发文量
28
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信