SR-ADDITIVE CODES

IF 0.5 4区 数学 Q3 MATHEMATICS
Saadoun Mahmoudi, K. Samei
{"title":"SR-ADDITIVE CODES","authors":"Saadoun Mahmoudi, K. Samei","doi":"10.4134/BKMS.B180995","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce SR-additive codes as a generalization of the classes of ZprZps and Z2Z2[u]-additive codes, where S is an R-algebra and an SR-additive code is an R-submodule of Sα × Rβ . In particular, the definitions of bilinear forms, weight functions and Gray maps on the classes of ZprZps and Z2Z2[u]-additive codes are generalized to SR-additive codes. Also the singleton bound for SR-additive codes and some results on one weight SR-additive codes are given. Among other important results, we obtain the structure of SR-additive cyclic codes. As some results of the theory, the structure of cyclic Z2Z4, ZprZps , Z2Z2[u], (Z2)(Z2+uZ2+uZ2), (Z2+uZ2)(Z2+uZ2+uZ2), (Z2)(Z2+uZ2+vZ2) and (Z2 + uZ2)(Z2 + uZ2 + vZ2)-additive codes are presented.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"34 1 1","pages":"1235-1255"},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B180995","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we introduce SR-additive codes as a generalization of the classes of ZprZps and Z2Z2[u]-additive codes, where S is an R-algebra and an SR-additive code is an R-submodule of Sα × Rβ . In particular, the definitions of bilinear forms, weight functions and Gray maps on the classes of ZprZps and Z2Z2[u]-additive codes are generalized to SR-additive codes. Also the singleton bound for SR-additive codes and some results on one weight SR-additive codes are given. Among other important results, we obtain the structure of SR-additive cyclic codes. As some results of the theory, the structure of cyclic Z2Z4, ZprZps , Z2Z2[u], (Z2)(Z2+uZ2+uZ2), (Z2+uZ2)(Z2+uZ2+uZ2), (Z2)(Z2+uZ2+vZ2) and (Z2 + uZ2)(Z2 + uZ2 + vZ2)-additive codes are presented.
SR-ADDITIVE代码
本文将sr -加性码作为ZprZps和Z2Z2[u]-加性码类的推广引入,其中S是r代数,sr -加性码是Sα × Rβ的r子模。特别地,将ZprZps和Z2Z2[u]-加性码类上的双线性形式、权函数和灰色映射的定义推广到sr -加性码。同时给出了sr -加性码的单例界和一些单权sr -加性码的结果。在其他重要结果中,我们得到了sr加性循环码的结构。作为理论的一些结果,给出了环状Z2Z4、ZprZps、Z2Z2[u]、(Z2)(Z2+uZ2+uZ2)、(Z2+uZ2)(Z2+uZ2+uZ2)、(Z2)(Z2+uZ2+vZ2)和(Z2+uZ2)(Z2+uZ2+ vZ2)加性编码的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信