TOTAL DOMINATION NUMBER OF CENTRAL GRAPHS

IF 0.6 4区 数学 Q3 MATHEMATICS
Farshad Kazemnejad, S. Moradi
{"title":"TOTAL DOMINATION NUMBER OF CENTRAL GRAPHS","authors":"Farshad Kazemnejad, S. Moradi","doi":"10.4134/BKMS.B180891","DOIUrl":null,"url":null,"abstract":"Let G be a graph with no isolated vertex. A total dominating set, abbreviated TDS of G is a subset S of vertices of G such that every vertex of G is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a TDS of G. In this paper, we study the total domination number of central graphs. Indeed, we obtain some tight bounds for the total domination number of a central graph C(G) in terms of some invariants of the graph G. Also we characterize the total domination number of the central graph of some families of graphs such as path graphs, cycle graphs, wheel graphs, complete graphs and complete multipartite graphs, explicitly. Moreover, some Nordhaus-Gaddum-like relations are presented for the total domination number of central graphs.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"56 1","pages":"1059-1075"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B180891","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

Let G be a graph with no isolated vertex. A total dominating set, abbreviated TDS of G is a subset S of vertices of G such that every vertex of G is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a TDS of G. In this paper, we study the total domination number of central graphs. Indeed, we obtain some tight bounds for the total domination number of a central graph C(G) in terms of some invariants of the graph G. Also we characterize the total domination number of the central graph of some families of graphs such as path graphs, cycle graphs, wheel graphs, complete graphs and complete multipartite graphs, explicitly. Moreover, some Nordhaus-Gaddum-like relations are presented for the total domination number of central graphs.
中心图的总支配数
设G是一个没有孤立顶点的图。G的总支配集,简称TDS,是G的顶点的子集S,使得G的每个顶点都与S中的一个顶点相邻。G的总支配数是G的TDS的最小基数。实际上,我们利用图G的一些不变量,得到了中心图C(G)的总控制数的紧界,并明确地刻画了路径图、循环图、轮图、完全图和完全多部图等图族的中心图的总控制数。此外,给出了中心图的总支配数的一些类诺德豪斯-加德姆关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信