Effects of Recombinant Aquaporin 3 and Seawater Acclimation on the Expression of Aquaporin 3 and 8 mRNAs in the Parr and Smolt Stages of Rainbow Trout, Oncorhynchus mykiss

Q4 Engineering
Na Na Kim, Young Jae Choi, S. Lim, Bong-Seok Kim, C. Choi
{"title":"Effects of Recombinant Aquaporin 3 and Seawater Acclimation on the Expression of Aquaporin 3 and 8 mRNAs in the Parr and Smolt Stages of Rainbow Trout, Oncorhynchus mykiss","authors":"Na Na Kim, Young Jae Choi, S. Lim, Bong-Seok Kim, C. Choi","doi":"10.4217/OPR.2016.38.2.103","DOIUrl":null,"url":null,"abstract":"This study aimed to examine the role of two aquaporin isoforms (AQP3 and AQP8) in response to the hyperosmotic challenge of transitioning from freshwater (FW) to seawater (SW) during parr and smoltification (smolt) using the rainbow trout, Oncorhynchus mykiss. We examined the changes in the expression of AQPs mRNAs in the gills and intestine of the parr and smolt stages of rainbow trout transferred from FW to SW using quantitative real-time PCR in an osmotically changing environment [FW, SW, and recombinant AQP3 (rAQP3) injection at two dosage rates]. Correspondingly, AQPs were greater during smoltification than during parr stages in the rainbow trout. Plasma osmolality and gill Na⁺/K⁺-ATPase activity increased when the fish were exposed to SW, but these parameters decreased when the fish were exposed to SW following treatment with rAQP3 during the transition to seawater. Our results suggest that AQPs play an important role in water absorbing mechanisms associated with multiple AQP isoforms in a hyperosmotic environment.","PeriodicalId":35665,"journal":{"name":"Ocean and Polar Research","volume":"38 1","pages":"103-113"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean and Polar Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4217/OPR.2016.38.2.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

This study aimed to examine the role of two aquaporin isoforms (AQP3 and AQP8) in response to the hyperosmotic challenge of transitioning from freshwater (FW) to seawater (SW) during parr and smoltification (smolt) using the rainbow trout, Oncorhynchus mykiss. We examined the changes in the expression of AQPs mRNAs in the gills and intestine of the parr and smolt stages of rainbow trout transferred from FW to SW using quantitative real-time PCR in an osmotically changing environment [FW, SW, and recombinant AQP3 (rAQP3) injection at two dosage rates]. Correspondingly, AQPs were greater during smoltification than during parr stages in the rainbow trout. Plasma osmolality and gill Na⁺/K⁺-ATPase activity increased when the fish were exposed to SW, but these parameters decreased when the fish were exposed to SW following treatment with rAQP3 during the transition to seawater. Our results suggest that AQPs play an important role in water absorbing mechanisms associated with multiple AQP isoforms in a hyperosmotic environment.
重组水通道蛋白3和海水驯化对虹鳟幼期和幼期水通道蛋白3和8 mrna表达的影响
本研究旨在研究两种水通道蛋白(AQP3和AQP8)在虹鳟交配和孵化(smolt)期间从淡水(FW)过渡到海水(SW)的高渗挑战中的作用。在渗透变化的环境下,我们使用实时荧光定量PCR检测了虹鳟鱼从FW转移到SW的幼鱼期和幼鱼期的鳃和肠道中AQPs mrna的表达变化[FW、SW和重组AQP3 (rAQP3)注射两种剂量率]。相应的,虹鳟鱼在孵育期AQPs比交配期要高。当鱼暴露于SW时,血浆渗透压和鳃Na + /K + - atp酶活性升高,但在过渡到海水的过程中,用rAQP3处理SW后,这些参数降低。我们的研究结果表明,在高渗环境中,AQP在与多种AQP亚型相关的吸水机制中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean and Polar Research
Ocean and Polar Research Engineering-Ocean Engineering
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信